Reputation: 637
I have a simple exercise, but cannot find a simple solution to it in Pandas. My dataframe has the following form:
A B C D A1 B1 C1 D1
0 0.0 0.0 0.0 0.090909 0.247747 0.162398 0.381459 0.208396
1 0.0 0.0 0.0 0.090909 0.250811 0.168629 0.374599 0.205961
2 0.0 0.0 0.0 0.090909 0.252173 0.168521 0.374551 0.204755
I want to calculate the sum product of the columns using always AA1 + BB1 .. .D*D1
I found a solution, but it is a bit messy and not suitable as soon as the number of columns will increase. Any pythonic way to solve this? Using Excel I would you the sumproduct
function.
Current solution:
df['SP'] = df[["A", 'A1']].prod(axis=1) + df[["B", 'B1']].prod(axis=1) + df[["C", 'C1']].prod(axis=1) + df[["D", 'D1']].prod(axis=1)
Should lead to:
df[SP]
0.018945
0.018724
0.018614
Upvotes: 0
Views: 6059
Reputation: 150785
Similar to Chris' comment, but you can ignore the column names and pass the range instead:
num_base_cols=4
num_repeat = 2
col_groups = np.tile(np.arange(num_base_cols), num_repeat)
df.groupby(col_groups, axis=1).prod().sum(1)
Output:
0 0.018945
1 0.018724
2 0.018614
dtype: float64
Upvotes: 2
Reputation: 1599
You can identify the columns on the 'left' and 'right' and then multiply and sum(axis=1)
.
Note that I'm assuming all of your columns follow the col_name
/col_name<number>
convention (if this is not the case, you will have to manually identify the column names in the lists cols_left
and cols_right
).
import pandas as pd
df = pd.DataFrame(data={
'A': [0,0,0],
'B': [0,0,0],
'C': [0,0,0],
'D': [0.090909, 0.090909, 0.090909],
'A1': [0.247747,0.250811, 0.252173],
'B1': [0.162398, 0.168629, 0.168521],
'C1': [0.381459, 0.374599, 0.374551],
'D1': [0.208396, 0.205961, 0.204755]
})
cols_left = [c for c in df.columns if '1' not in c]
cols_right = [c for c in df.columns if '1' in c]
out = (df[cols_left] * df[cols_right].values).sum(axis=1)
out:
0 0.018945
1 0.018724
2 0.018614
Upvotes: 1