Alessandrini
Alessandrini

Reputation: 191

Pandas: Drop duplicates based on row value

I have a dataframe and I want to drop duplicates based on different conditions....

        A      B
  0     1     1.0
  1     1     1.0
  2     2     2.0
  3     2     2.0
  4     3     3.0
  5     4     4.0
  6     5     5.0
  7     -     5.1
  8     -     5.1
  9     -     5.3

I want to drop all the duplicates from column A except rows with "-". After this, I want to drop duplicates from column A with "-" as a value based on their column B value. Given the input dataframe, this should return the following:-

        A      B
  0     1     1.0
  2     2     2.0
  4     3     3.0
  5     4     4.0
  6     5     5.0
  7     -     5.1
  9     -     5.3

I have the following code but it's not very efficient for very large amounts of data, how can I improve this....

 def generate(df):
     str_col = df[df["A"] == "-"]

     df.drop(df[df["A"] == "-"].index, inplace=True)

     df = df.drop_duplicates(subset="A")

     str_col = b.drop_duplicates(subset="B")

     bigdata = df.append(str_col, ignore_index=True)

     return bigdata.sort_values("B")

Upvotes: 3

Views: 1081

Answers (3)

BENY
BENY

Reputation: 323226

groupby + head

df.groupby(['A','B']).head(1)
Out[7]: 
   A    B
0  1  1.0
2  2  2.0
4  3  3.0
5  4  4.0
6  5  5.0
7  -  5.1
9  -  5.3

Upvotes: 2

r.ook
r.ook

Reputation: 13868

df.drop_duplicates(subset=['A', 'B'])

Given a full set of data:

   A    B  C
0  1  1.0  0
1  1  1.0  1
2  2  2.0  2
3  2  2.0  3
4  3  3.0  4
5  4  4.0  5
6  5  5.0  6
7  -  5.1  7
8  -  5.1  8
9  -  5.3  9

Result:

   A    B  C
0  1  1.0  0
2  2  2.0  2
4  3  3.0  4
5  4  4.0  5
6  5  5.0  6
7  -  5.1  7
9  -  5.3  9

Upvotes: 2

Quang Hoang
Quang Hoang

Reputation: 150735

duplicated and eq:

df[~df.duplicated('A')            # keep those not duplicates in A
   | (df['A'].eq('-')             # or those '-' in A
      & ~df['B'].duplicated())]   # which are not duplicates in B

Output:

   A    B
0  1  1.0
2  2  2.0
4  3  3.0
5  4  4.0
6  5  5.0
7  -  5.1
9  -  5.3

Upvotes: 7

Related Questions