Karthik reddy
Karthik reddy

Reputation: 79

pyspark: text file is read but data frame is showing an error

I am trying to read a text file from local to a pyspark DF. with

 df = spark.read.text("file:///<path>")

This runs successfully and gives out a dataframe.

df. printSchema()

output:

root
 |-- value: string (nullable = true)

but when try to access df it gives out the following error.

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/dataframe.py", line 350, in show
    print(self._jdf.showString(n, 20, vertical))
  File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o380.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 4 times, most recent failure: Lost task 0.3 in stage 6.0 (TID 23, xhadoopw396p.aetna.com, executor 1): java.io.FileNotFoundException: File file:/u02/data/data_exchange/ftp/retail/dev/rdl/test_wait.txt does not exist
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:131)
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:182)
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
        at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
        at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
        at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)
        at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1651)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1639)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1638)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1638)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1872)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1821)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1810)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2034)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2055)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2074)
        at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:363)
        at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
        at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)
        at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
        at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
        at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
        at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
        at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)
        at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)
        at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:282)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:238)
        at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.FileNotFoundException: File file:/u02/data/data_exchange/ftp/retail/dev/rdl/test_wait.txt does not exist
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:131)
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:182)
        at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
        at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
        at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:253)
        at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
        at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)
        at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:836)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        ... 1 more

"file:/u02/data/data_exchange/ftp/retail/dev/rdl/test_wait.txt does not exist It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved." is error that i am getting. Please if someone has faced this help me.

Upvotes: 0

Views: 2502

Answers (1)

Joe9008
Joe9008

Reputation: 654

Something similar was happening to me in databricks when reading and writing a dataframe from a csv, and I solved by just doing a cache when reading the file. The following was giving me an error,

 df = spark.read.csv(path= file_pth, header=True)

You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.

So the solution was so simple as adding a cache when reading the file.

df = spark.read.csv(path= file_pth, header=True).cache()

So now you can even delete the file path (csv, parquet. etc..) and do anything with the dataframe that is in the memory. Hope it can be helpful.

Upvotes: 3

Related Questions