Reputation: 2081
I need to transpose a dataframe without using t()
as I want to avoid transforming it into a matrix. So, I'm using the solution from here:
mydata <- data.table(col0=c("row1","row2","row3"),
col1=c(11,21,31),
col2=c(12,22,32),
col3=c(13,23,33))
mydata
# col0 col1 col2 col3
# row1 11 12 13
# row2 21 22 23
# row3 31 32 33
dcast(melt(mydata, id.vars = "col0"), variable ~ col0)
# variable row1 row2 row3
# 1: col1 11 21 31
# 2: col2 12 22 32
# 3: col3 13 23 33
And I use the same logic with the data I'm using:
x <- merge(as.data.frame(table(mtcars$mpg)), as.data.frame(round(prop.table(table(mtcars$mpg)),2)), by="Var1", all.x=TRUE)
data.table::dcast(data.table::melt(x, id.vars = "Var1"), variable ~ Var1)
It works! But it gives me a warning and a "future error":
Warning message in data.table::melt(x, id.vars = "Var1"): “The melt generic in data.table has been passed a data.frame and will attempt to redirect to the relevant reshape2 method; please note that reshape2 is deprecated, and this redirection is now deprecated as well. To continue using melt methods from reshape2 while both libraries are attached, e.g. melt.list, you can prepend the namespace like reshape2::melt(x). In the next version, this warning will become an error.” Warning message in data.table::dcast(data.table::melt(x, id.vars = "Var1"), variable ~ : “The dcast generic in data.table has been passed a data.frame and will attempt to redirect to the reshape2::dcast; please note that reshape2 is deprecated, and this redirection is now deprecated as well. Please do this redirection yourself like reshape2::dcast(data.table::melt(x, id.vars = "Var1")). In the next version, this warning will become an error.”
Also, I have been trying to transpose the dataframe using a solution from here using dplyr::spread()
but it seems to be far more complicated than the solution from data.table
package (when the value columns are more than 1, as in this case). I'm more used to dplyr()
and tidyverse()
but data.table
solution is far simpler to just ignore it.
Additional Information.
> sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Debian GNU/Linux 9 (stretch)
Matrix products: default
BLAS/LAPACK: /usr/lib/libopenblasp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] GGally_1.4.0 forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
[5] purrr_0.3.2 readr_1.3.1 tidyr_1.0.0 tibble_2.1.3
[9] ggplot2_3.2.1.9000 tidyverse_1.2.1 bigrquery_1.2.0 httr_1.4.1
loaded via a namespace (and not attached):
[1] bit64_0.9-7 jsonlite_1.6 splines_3.6.0
[4] modelr_0.1.4 Formula_1.2-3 assertthat_0.2.1
[7] getPass_0.2-2 latticeExtra_0.6-28 cellranger_1.1.0
[10] pillar_1.4.2 backports_1.1.5 lattice_0.20-38
[13] glue_1.3.1 uuid_0.1-2 digest_0.6.21
[16] checkmate_1.9.4 RColorBrewer_1.1-2 rvest_0.3.4
[19] colorspace_1.4-1 htmltools_0.4.0 Matrix_1.2-17
[22] plyr_1.8.4 psych_1.8.12 pkgconfig_2.0.3
[25] broom_0.5.2 haven_2.1.1 scales_1.0.0
[28] htmlTable_1.13.2 generics_0.0.2 withr_2.1.2
[31] repr_1.0.1.9000 skimr_1.0.7 nnet_7.3-12
[34] cli_1.1.0 mnormt_1.5-5 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 readxl_1.3.1
[40] evaluate_0.14 fs_1.3.1 nlme_3.1-141
[43] xml2_1.2.2 foreign_0.8-72 data.table_1.12.4
[46] tools_3.6.0 hms_0.5.1 gargle_0.4.0
[49] lifecycle_0.1.0 munsell_0.5.0 cluster_2.1.0
[52] compiler_3.6.0 rlang_0.4.0 grid_3.6.0
[55] pbdZMQ_0.3-3 IRkernel_1.0.2.9000 rstudioapi_0.10
[58] htmlwidgets_1.5.1 base64enc_0.1-3 gtable_0.3.0
[61] DBI_1.0.0 reshape_0.8.8 reshape2_1.4.3
[64] R6_2.4.0 gridExtra_2.3 lubridate_1.7.4
[67] knitr_1.25 bit_1.1-14 zeallot_0.1.0
[70] Hmisc_4.2-0 stringi_1.4.3 parallel_3.6.0
[73] IRdisplay_0.7.0.9000 Rcpp_1.0.2 vctrs_0.2.0
[76] rpart_4.1-15 acepack_1.4.1 xfun_0.10
[79] tidyselect_0.2.5
Upvotes: 3
Views: 3630
Reputation: 29203
You need to make sure that you are passing a data.table
object to data.table::melt
and data.table::dcast
.
x<-merge(as.data.frame(table(mtcars$mpg)),
as.data.frame(round(prop.table(table(mtcars$mpg)),2)),
by="Var1", all.x=TRUE)
data.table::dcast(data.table::melt(data.table::setDT(x), id.vars = "Var1"),
variable ~ Var1)
Warning(s):
You see that by using data.table::setDT
, that "future error" is resolved.
#> Warning in melt.data.table(data.table::setDT(x), id.vars = "Var1"):
#> 'measure.vars' [Freq.x, Freq.y] are not all of the same type. By order
#> of hierarchy, the molten data value column will be of type 'double'. All
#> measure variables not of type 'double' will be coerced too. Check DETAILS
#> in ?melt.data.table for more on coercion.
Output:
#> variable 10.4 13.3 14.3 14.7 15 15.2 15.5 15.8 16.4 17.3 17.8 18.1
#> 1: Freq.x 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
#> 2: Freq.y 0.06 0.03 0.03 0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.03 0.03
#> 18.7 19.2 19.7 21 21.4 21.5 22.8 24.4 26 27.3 30.4 32.4 33.9
#> 1: 1.00 2.00 1.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00
#> 2: 0.03 0.06 0.03 0.06 0.06 0.03 0.06 0.03 0.03 0.03 0.06 0.03 0.03
P.S. I could not get the error reproduced in data.table_1.12.2
and had to update to data.table_1.12.6
.
Upvotes: 3
Reputation: 28705
I need to transpose a dataframe without using t() as I want to avoid transforming it into a matrix.
If your only requirement is to avoid coercing your data frame into a matrix, you can use data.table::transpose
which requires version >= 1.12.4
data.table::transpose(
mydata,
keep.names = 'variable',
make.names = names(mydata)[1])
# variable row1 row2 row3
# 1: col1 11 21 31
# 2: col2 12 22 32
# 3: col3 13 23 33
Upvotes: 5
Reputation: 1267
The new tidyr 1.0 functions make this a lot easier:
library(tidyverse)
library(magrittr)
#>
#> Attaching package: 'magrittr'
#> The following object is masked from 'package:purrr':
#>
#> set_names
#> The following object is masked from 'package:tidyr':
#>
#> extract
mydata <- tibble(col0=c("row1","row2","row3"),
col1=c(11,21,31),
col2=c(12,22,32),
col3=c(13,23,33))
# First collect all the values in the one column
(new_data <- mydata %>% pivot_longer(col1:col3))
#> # A tibble: 9 x 3
#> col0 name value
#> <chr> <chr> <dbl>
#> 1 row1 col1 11
#> 2 row1 col2 12
#> 3 row1 col3 13
#> 4 row2 col1 21
#> 5 row2 col2 22
#> 6 row2 col3 23
#> 7 row3 col1 31
#> 8 row3 col2 32
#> 9 row3 col3 33
# Col0 is what we want the new column names to come from, so:
(new_data %<>% pivot_wider(names_from = col0))
#> # A tibble: 3 x 4
#> name row1 row2 row3
#> <chr> <dbl> <dbl> <dbl>
#> 1 col1 11 21 31
#> 2 col2 12 22 32
#> 3 col3 13 23 33
So with your mtcars
use case:
library(tidyverse)
(x <-
mtcars %>%
group_by(mpg) %>%
summarize(Freq.x = n(),
Freq.y = Freq.x/nrow(.)) %>%
pivot_longer(-mpg) %>%
pivot_wider(names_from = mpg))
#> # A tibble: 2 x 26
#> name `10.4` `13.3` `14.3` `14.7` `15` `15.2` `15.5` `15.8` `16.4`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Freq~ 2 1 1 1 1 2 1 1 1
#> 2 Freq~ 0.0625 0.0312 0.0312 0.0312 0.0312 0.0625 0.0312 0.0312 0.0312
#> # ... with 16 more variables: `17.3` <dbl>, `17.8` <dbl>, `18.1` <dbl>,
#> # `18.7` <dbl>, `19.2` <dbl>, `19.7` <dbl>, `21` <dbl>, `21.4` <dbl>,
#> # `21.5` <dbl>, `22.8` <dbl>, `24.4` <dbl>, `26` <dbl>, `27.3` <dbl>,
#> # `30.4` <dbl>, `32.4` <dbl>, `33.9` <dbl>
I know basically nothing about data.table
, but this gives me no red.
Now, if your values aren't all the same type, this will still give you issues - because it's still at some point stacking all the values into one column - so I was going to suggest a nest()
approach. But then I realized... if you want to transpose the thing, and the rows aren't all the same value types, then you're ultimately trying to get values of different types into one column, aren't you? So some homogenizing conversion will be unavoidable.
Created on 2019-10-22 by the reprex package (v0.3.0)
Upvotes: 2