Reputation: 35390
Given a dataframe that looks something like this:
date,score
2019-10-01,5
2019-10-02,4
2019-10-03,3
2019-10-04,6
How do I go about calculating the mean of score
using subsequent/following rows, such that it looks/behaves like this:
date,score
2019-10-01,5,(5+4+3+6)/4
2019-10-02,4,(4+3+6)/3
2019-10-03,3,(3+6)/2
2019-10-04,6,6
This is super easy in SQL which is where I am trying to translate this from, where in SQL I can write:
select avg(score) over(order by date) ...
But I'm having trouble trying to figure this out in pandas.
Any guidance would be greatly appreciated.
Thank you!
Upvotes: 1
Views: 164
Reputation: 150755
cumsum
on reverse series:
df['cum_mean'] = (df[::-1].assign(c=1)
.agg({'score':'cumsum', 'c':'cumsum'})
.assign(cum_mean = lambda x: x['score']/x['c'])
['cum_mean']
)
Output:
date score cum_mean
0 2019-10-01 5 4.500000
1 2019-10-02 4 4.333333
2 2019-10-03 3 4.500000
3 2019-10-04 6 6.000000
Upvotes: 0
Reputation: 25249
Try expanding
on the reversed series
df['calc_mean'] = df.score[::-1].expanding(1).mean()
Out[228]:
date score calc_mean
0 2019-10-01 5 4.500000
1 2019-10-02 4 4.333333
2 2019-10-03 3 4.500000
3 2019-10-04 6 6.000000
Upvotes: 1
Reputation: 59274
Use cumsum
bottom-up and divide by the arange
df['cummean'] = df.score[::-1].cumsum()[::-1] / np.arange(len(df), 0, -1)
date score cummean
0 2019-10-01 5 4.500000
1 2019-10-02 4 4.333333
2 2019-10-03 3 4.500000
3 2019-10-04 6 6.000000
Upvotes: 1