Reputation: 719
My input pandas dataframe look like below
df = pd.DataFrame([ ['AC', 'CompleteWeight', '0.2'],
['BB', 'CompleteWeight', '0.3'], ['RPL', 'CompleteWeight', '0.1'],
['IA', 'MultiPackageCompleteWeight', '0.2'],
['RPL', 'MultiPackageCompleteWeight', '0.5']],
columns=['Run Type', 'Name', 'Value'])
>>> df
Run Type Name Value
0 AC CompleteWeight 0.2
1 BB CompleteWeight 0.3
2 RPL CompleteWeight 0.1
3 IA MultiPackageCompleteWeight 0.2
4 RPL MultiPackageCompleteWeight 0.5
>>>
I want to get only 0.5 in "Value" column with using Column & Row names not the indexes.
Desired output is;
Desired =0.5
Could you please help me about this?
Upvotes: 2
Views: 445
Reputation: 863741
Use DataFrame.loc
with boolean indexing
and then select first value:
mask = (df['Run Type'] == 'RPL') & (df['Name'] == 'MultiPackageCompleteWeight')
desired = df.loc[mask, 'Value'].values[0]
#alternative
#Desired = df.loc[mask, 'Value'].iat[0]
print(desired)
0.5
If possible RPL
or MultiPackageCompleteWeight
not exist:
desired = next(iter(df.loc[mask, 'Value']), 'no match')
print(desired)
Upvotes: 2