Kristof
Kristof

Reputation: 174

How to efficiently index a numpy array based on varying start and stop indexes per row

I have a 2D numpy array with rows being time series of a feature, based on which I'm training a neural network. For generalisation purposes, I would like to subset these time series at random points. I'd like them to have a minimum subset length as well. However, the network requires fixed length time series, so I need to pre-pad the resulting subsets with zeroes.

Currently, I'm doing it using the code below, which includes a nasty for-loop, because I don't know how I can use fancy indexing for this particular problem. As this piece of code is part of the network data generator, it needs to be fast to keep up to pace with the data-hungry GPU. Does anyone know a numpy-way of doing this without the for-loop?

import numpy as np
import matplotlib.pyplot as plt

# Amount of time series to consider
batchsize = 25

# Original length of the time series
timesteps = 150

# As an example, fill the 2D array with sine function time series
sinefunction = np.expand_dims(np.sin(np.arange(timesteps)), axis=0)
originalarray = np.repeat(sinefunction, batchsize, axis=0)

# Now the real thing, we want:
# - to start the time series at a random moment (between 0 and maxstart)
# - to end the time series at a random moment
# - however with a minimum length of the resulting subset time series (minlength)
maxstart = 50
minlength = 75

# get random starts
randomstarts = np.random.choice(np.arange(0, maxstart), size=batchsize)

# get random stops
randomstops = np.random.choice(np.arange(maxstart + minlength, timesteps), size=batchsize)

# determine the resulting random sizes of the subset time series
randomsizes = randomstops - randomstarts

# finally create a new 2D array with all the randomly subset time series, however pre-padded with zeros
# THIS IS THE FOR LOOP WE SHOULD TRY TO AVOID
cutarray = np.zeros_like(originalarray)
for i in range(batchsize):
    cutarray[i, -randomsizes[i]:] = originalarray[i, randomstarts[i]:randomstops[i]]

To show what goes in and out of the function:

# Show that it worked
f, ax = plt.subplots(2, 1)
ax[0].imshow(originalarray)
ax[0].set_title('original array')
ax[1].imshow(cutarray)
ax[1].set_title('zero-padded subset array')

Example of the desired functionality

Upvotes: 1

Views: 89

Answers (1)

Divakar
Divakar

Reputation: 221684

Approach #1 : Views-based

We can leverage np.lib.stride_tricks.as_strided based scikit-image's view_as_windows to get sliding windowed views into a zeros padded version of the input and assign into a zeros padded version of the output. All of that padding is needed for a vectorized solution on account of the ragged nature. Upside is that working on views would be efficient on memory and performance.

The implementation would look something like this -

from skimage.util.shape import view_as_windows

n = randomsizes.max()
max_extent = randomstarts.max()+n
padlen = max_extent - origalarray.shape[1]
p = np.zeros((origalarray.shape[0],padlen),dtype=origalarray.dtype)
a = np.hstack((origalarray,p))
w = view_as_windows(a,(1,n))[...,0,:]
out_vals = w[np.arange(len(randomstarts)),randomstarts]

out_starts = origalarray.shape[1]-randomsizes    
out_extensions_max = out_starts.max()+n

out = np.zeros((origalarray.shape[0],out_extensions_max),dtype=origalarray.dtype)
w2 = view_as_windows(out,(1,n))[...,0,:]
w2[np.arange(len(out_starts)),out_starts] = out_vals
cutarray_out = out[:,:origalarray.shape[1]]

Approach #2 : With masking

cutarray_out = np.zeros_like(origalarray)
r = np.arange(origalarray.shape[1])
m = (randomstarts[:,None]<=r) & (randomstops[:,None]>r)
s = origalarray.shape[1]-randomsizes
m2 = s[:,None]<=r
cutarray_out[m2] = origalarray[m]

Upvotes: 1

Related Questions