Reputation: 7343
I am trying to solve this question:
Given an integer array, adjust each integers so that the difference of every adjacent integers are not greater than a given number target.
If the array before adjustment is A, the array after adjustment is B, you should minimize the sum of `| A[i]-B[i] |. You can assume each number in the array is a positive integer and not greater than 100.
`
I see a dp solution but I don't quite understand the recurrence equation.
public static int MinAdjustmentCost(ArrayList<Integer> A, int target) {
// write your code here
if (A == null || A.size() == 0) {
return 0;
}
// D[i][v]: 把index = i的值修改为v,所需要的最小花费
int[][] D = new int[A.size()][101];
int size = A.size();
for (int i = 0; i < size; i++) {
for (int j = 1; j <= 100; j++) {
D[i][j] = Integer.MAX_VALUE;
if (i == 0) {
// The first element.
D[i][j] = Math.abs(j - A.get(i));
} else {
for (int k = 1; k <= 100; k++) {
// 不符合条件
if (Math.abs(j - k) > target) {
continue;
}
int dif = Math.abs(j - A.get(i)) + D[i - 1][k];
D[i][j] = Math.min(D[i][j], dif);
}
}
}
}
int ret = Integer.MAX_VALUE;
for (int i = 1; i <= 100; i++) {
ret = Math.min(ret, D[size - 1][i]);
}
return ret;
}
Could someone explain it to me?
Upvotes: 1
Views: 838
Reputation: 5613
You need to minimize the cost of the adjustment, which is the value you increase/decrease every element such that the difference between every adjacent elements is less than or equal to target
. The dp solution is to try every possible value and minimize the cost on the valid ones (when abs(A[i]-A[i-1]) <= target
)
First thing is to fill the cost for adjusting first element to 1-100 which is done here:
for (int i = 0; i < size; i++) {
for (int j = 1; j <= 100; j++) {
D[i][j] = Integer.MAX_VALUE; // fill with MAX_VALUE because we want to minimize
if (i == 0) {
// for the first element we just set the cost of adjusting A[i] to j
D[i][j] = Math.abs(j - A.get(i));
}
Now you have D[0][j]
as the cost to adjust the first element to be j
. Then for every other element, you loop again (from k = 1
to k = 100
) for other elements and try to change A[i]
to j
. And then you check if abs(k-j)
is valid (less than or equal to target
) then you can adjust A[i]
to be j
and A[i-1]
to be k
so you minimize on D[i][j]
.
Here D[i][j]
means the cost of changing A[i]
to j
and D[i-1][k]
is the cost of changing A[i-1]
to k
. so for every k
and j
if they are valid (abs(k-j)<=target
) then you add them together and minimize the value saved in D[i][j]
so you can use it for next element, which is done here:
else {
for (int k = 1; k <= 100; k++) {
// if abs(j-k) > target then changing A[i] to j isn't valid (when A[i-1] is k)
if (Math.abs(j - k) > target) {
continue;
}
// otherwise, calculate the the cost of changing A[i] to j and add to it the cost of changing A[i-1] to k
int dif = Math.abs(j - A.get(i)) + D[i - 1][k];
// minimize D[i][j]
D[i][j] = Math.min(D[i][j], dif);
}
}
At the end, you need to loop from 1 to 100 at the last element and check which is the minimum value over all, which is done here:
int ret = Integer.MAX_VALUE;
for (int i = 1; i <= 100; i++) {
ret = Math.min(ret, D[size - 1][i]);
}
I think if you split the initialization code and the DP calculation code it would be easier to understand, for example:
// fill the initial values
for (int i = 0; i < size; ++i) {
for (int j = 1; j <= 100; ++j) {
// on the first element just save the cost of changing
// A[i] to j
if (i == 0) {
DP[i][j] = abs(j-A.get(i));
} else {
// otherwise intialize with MAX_VALUE
D[i][j] = Integer.MAX_VALUE;
}
}
}
for (int i = 1; i < size; i++) {
for (int j = 1; j <= 100; j++) {
for (int k = 1; k <= 100; k++) {
// if abs(j-k) isn't valid skip it
if (Math.abs(j - k) > target) {
continue;
}
// if it is valid, calculate the cost of changing A[i] to j
// and add it to the cost of changing A[i-1] to k then minimize
// over all values of j and k
int dif = Math.abs(j - A.get(i)) + D[i - 1][k];
D[i][j] = Math.min(D[i][j], dif);
}
}
}
// calculate the minimum cost at the end
int ret = Integer.MAX_VALUE;
for (int i = 1; i <= 100; i++) {
ret = Math.min(ret, D[size - 1][i]);
}
Upvotes: 2