Reputation: 1415
In order to check, whether a pandas contains missing/nan values, one can use the isnull function.
test_pandas = pd.DataFrame([[np.float(3),np.float(1),np.float(4.3)],[np.float(5.8),np.nan,[1,2,3]]],columns = ['A','B','C'])
value = test_pandas.isnull().values.any()
test_pandas.head()
gives
A B C
0 3.0 1.0 4.3
1 5.8 NaN [1, 2, 3]
and with
print("There exists a nan value in the dataframe: ",test_pandas.isnull().values.any())
print("Number of nan values: ",test_pandas.isnull().sum().sum())
we find
There exists a nan value in the dataframe: True
Number of nan values: 1
Upvotes: 0
Views: 65
Reputation: 61900
You could use a custom function with applymap:
def isfloat(x):
return isinstance(x, float)
print(df.applymap(isfloat))
Output
A B C
0 True True True
1 True True False
Upvotes: 3