Reputation: 561
I am trying to come up with a script that will allow me to read all csv files with greater than 62 bits and print two columns into a separate excel file and create a list.
The following is one of the csv files:
FileUUID Table RowInJSON JSONVariable Error Notes SQLExecuted
ff3ca629-2e9c-45f7-85f1-a3dfc637dd81 lng02_rpt_b_calvedets 1 Duplicate entry 'ETH0007805440544' for key 'nosameanimalid' INSERT INTO lng02_rpt_b_calvedets(farmermobile,hh_id,rpt_b_calvedets_rowid,damidyesno,damid,calfdam_id,damtagid,calvdatealv,calvtype,calvtypeoth,easecalv,easecalvoth,birthtyp,sex,siretype,aiprov,othaiprov,strawidyesno,strawid) VALUES ('0974502779','1','1','0','ETH0007805440544','ETH0007805470547',NULL,'2017-09-16','1',NULL,'1',NULL,'1','2','1',NULL,NULL,NULL,NULL,NULL,'0',NULL,NULL,NULL,NULL,NULL,NULL,'0',NULL,'Tv',NULL,NULL,'Et','23',NULL,'5',NULL,NULL,NULL,'0','0')
This is my attempt to solving this problem:
path = 'csvs/'
for infile in glob.glob( os.path.join(path, '*csv') ):
output = infile + '.out'
with open(infile, 'r') as source:
readr = csv.reader(source)
with open(output,"w") as result:
writr = csv.writer(result)
for r in readr:
writr.writerow((r[4], r[2]))
Please help point me to the right direction with any alternative solution
Upvotes: 0
Views: 674
Reputation: 6020
Use the standard csv module. Don't re-invent the wheel.
https://docs.python.org/3/library/csv.html
Upvotes: 1
Reputation: 658
pandas does a lot of what you are trying to achieve:
import pandas as pd
# Read a csv file to a dataframe
df = pd.read_csv("<path-to-csv>")
# Filter two columns
columns = ["FileUUID", "Table"]
df = df[columns]
# Combine multiple dataframes
df_combined = pd.concat([df1, df2, df3, ...])
# Output dataframe to excel file
df_combined.to_excel("<output-path>", index=False)
To loop through all csv files > 62bits, you can use glob.glob() and os.stat()
import os
import glob
dataframes = []
for csvfile in glob.glob("<csv-folder-path>/*.csv"):
if os.stat(csvfile).st_size > 62:
dataframes.append(pd.read_csv(csvfile))
Upvotes: 1