Reputation: 55
Is there a easy way to drop empty column of a huge dataset (300+ col >100k row) in pyspark ? such as df.dropna(axis=1,how='all')
in Python
Upvotes: 1
Views: 5181
Reputation: 1
Here is an extended functionality of @pissall 's fn.:
def drop_null_columns(df, threshold=-1):
"""
This function drops all columns which contain null values.
If threshold is negative (default), drop columns that have only null values.
If threshold is >=0, drop columns that have count of null values bigger than threshold. This may be very computationally expensive!
Returns PySpark DataFrame.
"""
if threshold<0:
max_per_column = df.select([F.max(c).alias(c) for c in df.columns]).collect()[0].asDict()
to_drop = [k for k, v in max_per_column.items() if v == None]
else:
null_counts = df.select([F.count(F.when(F.col(c).isNull(), c)).alias(c) for c in df.columns]).collect()[0].asDict()
to_drop = [k for k, v in null_counts.items() if v > threshold]
df = df.drop(*to_drop)
return df
Upvotes: 0
Reputation: 7419
Yes, you can simply use the answer from here. I've added a threshold
parameter to it:
import pyspark.sql.functions as F
# Sample data
df = pd.DataFrame({'x1': ['a', '1', '2'],
'x2': ['b', None, '2'],
'x3': ['c', '0', '3'] })
df = sqlContext.createDataFrame(df)
df.show()
def drop_null_columns(df, threshold=0):
"""
This function drops all columns which contain null values.
:param df: A PySpark DataFrame
"""
null_counts = df.select([F.count(F.when(F.col(c).isNull(), c)).alias(c) for c in df.columns]).collect()[0].asDict()
to_drop = [k for k, v in null_counts.items() if v > threshold]
df = df.drop(*to_drop)
return df
# Drops column b2, because it contains null values
drop_null_columns(df).show()
+---+---+
| x1| x3|
+---+---+
| a| c|
| 1| 0|
| 2| 3|
+---+---+
Column x2 has been dropped.
You can use threshold=df.count()
to while using it
Upvotes: 1