Reputation: 781
I have two dataframes, one with a metric as of the last day of the month. The other contains a metric summed for the whole month. The former (monthly_profit
) looks like this:
profit
yyyy_mm_dd
2018-01-01 8797234233.0
2018-02-01 3464234233.0
2018-03-01 5676234233.0
...
2019-10-01 4368234233.0
While the latter (monthly_employees
) looks like this:
employees
yyyy_mm_dd
2018-01-31 924358
2018-02-28 974652
2018-03-31 146975
...
2019-10-31 255589
I want to get profit per employee, so I've done this:
profit_per_employee = (monthly_profit['profit']/monthly_employees['employees'])*100
This is the output that I get:
yyyy_mm_dd
2018-01-01 NaN
2018-01-31 NaN
2018-02-01 NaN
2018-02-28 NaN
How could I fix this? The reason that one dataframe is the last day of the month and the other is the first day of the month is due to rolling vs non-rolling data.
monthly_profit
is the result of grouping and summing daily profit data:
monthly_profit = df.groupby(['yyyy_mm_dd'])[['proft']].sum()
monthly_profit = monthly_profit.resample('MS').sum()
While monthly_employees
is a running total, so I need to take the current value for the last day of each month:
monthly_employees = df.groupby(['yyyy_mm_dd'])[['employees']].sum()
monthly_employees = monthly_employees.groupby([monthly_employees.index.year, monthly_employees.index.month]).tail(1)
Upvotes: 2
Views: 230
Reputation: 863166
Change MS
to M
for end of months for match both DatatimeIndex
:
monthly_profit = monthly_profit.resample('M').sum()
Upvotes: 1