Reputation: 77
I can't figure out how to print next ten Perfect numbers. Here's what I have got so far:
#include <stdio.h>
int main() {
int n, c = 1, d = 2, sum = 1;
printf("Enter any number \n");
scanf("%d", &n);
printf("The perfect numbers are:");
while(c <= 10) {
sum = 1;
d = 2;
while(d <= n / 2) { //perfect no
if(n % d == 0) {
sum = sum + d;
}
d++;
}
if(sum == n) {
printf("%d\n", n);
}
c++;
}
return 0;
}
The output I am currently receiving:
input: 2 (say)
output: 6
What I want:
input: 2
output:
6
28
496
8128
33550336
858986905
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216
I have just started coding. Any help will be appreciated.
Upvotes: 2
Views: 1127
Reputation: 154255
Research, divide and conquer
Perfect numbers are of the form 2p − 1 * (2p − 1).
Code will need extended precision to form 191561942608236107294793378084303638130997321548169216
Increase efficiency
Iterating to <= n / 2
takes far too long. Iterate up to <= n / d
// while(d <= n / 2) {
while(d <= n / d) {
Sample improved code:
bool isprime(unsigned long long x) {
if (x > 3) {
if (x % 2 == 0) {
return false;
}
for (unsigned long t = 3; t <= x / t; t += 2) {
if (x % t == 0) {
return false;
}
}
return true;
}
return x >= 2;
}
Advanced: See Lucas–Lehmer primality test for quick prime test of Mersenne numbers
The below code works for all but the 10th perfect number as code must test for isprime(267 - 1) and I should leave something for OP to do.
static void buff_mul(char *buff, unsigned power_of_2) {
unsigned long long m = 1ull << power_of_2;
size_t len = strlen(buff);
unsigned long long carry = 0;
for (size_t i = len; i > 0;) {
i--;
unsigned long long sum = (buff[i] - '0') * m + carry;
buff[i] = sum % 10 + '0';
carry = sum / 10;
}
while (carry) {
memmove(buff + 1, buff, ++len);
buff[0] = carry % 10 + '0';
carry /= 10;
}
}
void print_perfext(unsigned p) {
// 2**(p-1) * (2**p - 1)
assert(p > 1 && p <= 164);
char buff[200] = "1";
buff_mul(buff, p);
buff[strlen(buff) - 1]--; // Decrement, take advantage that the LSDigit is never 0
buff_mul(buff, p - 1);
puts(buff);
fflush(stdout);
}
//unsigned next_prime(unsigned first_numeber_to_test_if_prime) {
#include <stdio.h>
int main() {
unsigned p = 0;
for (unsigned i = 0; i < 9; i++) {
// If p prime && 2**p − 1 is prime, then 2**(p − 1) * (2**p − 1) is a perfect number.
while (!isprime(p) || !isprime((1uLL << p) - 1))
p++;
printf("%2u ", p);
print_perfext(p);
p++;
}
return 0;
}
Output
2 6
3 28
5 496
7 8128
13 33550336
17 8589869056
19 137438691328
31 2305843008139952128
61 2658455991569831744654692615953842176
Upvotes: 1
Reputation: 41905
The integer overflow issue mentioned by several folks is significant, but secondary. Even if we fix your broken logic, and adjust it to handle larger, fixed sized integers:
#include <stdio.h>
int main() {
unsigned long long number;
printf("Enter any number \n");
scanf("%llu", &number);
printf("The perfect numbers are:\n");
int total = 0;
while (total < 10) {
unsigned long long sum = 1, divisor = 2;
while (divisor <= number / 2) {
if (number % divisor == 0) {
sum += divisor;
}
divisor++;
}
if (sum == number) {
printf("%llu\n", number);
total++;
}
number += 1;
}
return 0;
}
You still wouldn't get past the first four perfect numbers in any reasonable amount of time:
> ./a.out
Enter any number
2
The perfect numbers are:
6
28
496
8128
The primary issue is you're using a bad algorithm. Read about Mersenne primes, and their relationship to perfect numbers, as well as the Lucas-Lehmer test. This approach takes more thought, but surprisingly, not much more code. And will produce more results faster (though eventually bog down as well.)
Upvotes: 3
Reputation: 953
You have to put the counter after you find a perfect number, so increasing c
must happen in the if
statement that checks the perfect number, like this:
if(sum==n){
printf("%d",n);
c++;
}
After this you need to increase the number, called n, like this:
n++;
and based on the numbers, @Jonathan Leffler is right, you should use proper variables.
Upvotes: 2
Reputation: 509
From output you wrote I belive that u want to show 10 first perfect numbers Now u are only showing 6 because u show them from 1 to 10. In this range there is only 6. I wrote sth like this:
#include <stdio.h>
int isperfect(int input) {
int sum = 0, value = input / 2;
do {
if (input % value == 0) sum += value;
value--;
} while (value);
if (input == sum) return 1;
else return 0;
}
int main() {
int i;
int count;
for (i = 2, count = 0; count < 4; i++) {
if (isperfect(i) == 1) {
count++;
printf("%d\n", i);
}
}
return 0;
}
But I don't recomend counting more than 4 because its gonna take too much time
Upvotes: 1