Reputation: 530
I have a dataset df
:
df <- tibble(
id = sort(rep(letters[1:3], 3)),
visit_id = rep(c(0, 5, 10), 3),
true_visit = c(NA, 3, NA, 0, 5, 10, 1, 7, NA)
)
> df
# A tibble: 9 x 3
id visit_id true_visit
<chr> <dbl> <dbl>
1 a 0 NA
2 a 5 3
3 a 10 NA
4 b 0 0
5 b 5 5
6 b 10 10
7 c 0 1
8 c 5 7
9 c 10 NA
I’m trying to create a new column closest_visit
where I find the true_visit
that is closest to visit_id
within each individual. The result would look like:
# A tibble: 9 x 4
id visit_id true_visit closest_visit
<chr> <dbl> <dbl> <dbl>
1 a 0 NA 3
2 a 5 3 3
3 a 10 NA 3
4 b 0 0 0
5 b 5 5 5
6 b 10 10 10
7 c 0 1 1
8 c 5 7 7
9 c 10 NA 7
To clarify, closest_visit
is 3 for individual a
because it's the only true_visit
. closest_visit
is 1 for the seventh row because 0 (the visit_id
for that row) is closer to 1 than it is to 7 (the true_visit
s for that participant), and so on.
I tried looking here, here, and here. They were a good start but not exactly what I'm looking for. Any ideas?
Upvotes: 3
Views: 183
Reputation: 14774
Could go for:
library(dplyr)
df %>%
group_by(id) %>%
mutate(
closest_visit = case_when(
visit_id == true_visit ~ true_visit,
TRUE ~ true_visit[sapply(visit_id,
function(x) which.min(abs(x - true_visit)))]
)
)
Output:
# A tibble: 9 x 4
# Groups: id [3]
id visit_id true_visit closest_visit
<chr> <dbl> <dbl> <dbl>
1 a 0 NA 3
2 a 5 3 3
3 a 10 NA 3
4 b 0 0 0
5 b 5 5 5
6 b 10 10 10
7 c 0 1 1
8 c 5 7 7
9 c 10 NA 7
Upvotes: 1
Reputation: 175
This isn't the most pretty way, but it works on your example:
library(dplyr)
for (id in unique(df$id) ) {
available_visit = na.omit(df[df$id == id ,'true_visit']) %>% pull()
unique_id = unique(df$visit_id[df$id == id])
for (visit_id in unique_id) {
df[df$id == id & df$visit_id == visit_id, 'closest_visit' ] <-
available_visit[which.min(abs(available_visit-visit_id))]
}
}
Upvotes: 1
Reputation: 887981
One option is findInterval
and then fill
library(dplyr)
library(tidyr)
df %>%
group_by(id) %>%
mutate(closest_visit = na.omit(true_visit)[findInterval(true_visit,
visit_id)]) %>%
fill(closest_visit, .direction = "updown")
# A tibble: 9 x 4
# Groups: id [3]
# id visit_id true_visit closest_visit
# <chr> <dbl> <dbl> <dbl>
#1 a 0 NA 3
#2 a 5 3 3
#3 a 10 NA 3
#4 b 0 0 0
#5 b 5 5 5
#6 b 10 10 10
#7 c 0 1 1
#8 c 5 7 7
#9 c 10 NA 7
Upvotes: 1