Reputation: 351
I have 3 groups,let's call them g1, g2, g3. Each of them is a result of analysis in between groups of conditions, and g1 looks like this
geneSymbol logFC t P.Value adj.P.Val Beta
EXykpF1BRREdXnv9Xk MKI67 -0.3115880 -5.521186 5.772137e-07 0.008986062 4.3106665
0Tm7hdRJxd9zoevPlA CCL3L3 0.1708020 4.162115 9.109798e-05 0.508784638 0.6630544
u_M5UdFdhg3lZ.qe64 UBE2G1 -0.1528149 -4.031466 1.430822e-04 0.508784638 0.3354065
lkkLCXcnzL9NXFXTl4 SEL1L3 -0.2138729 -3.977482 1.720517e-04 0.508784638 0.2015945
0Uu3XrB6Bd14qoNeuc ZFP36 0.1667330 3.944917 1.921715e-04 0.508784638 0.1213335
3h7Sgq2i3sAUkxL_n8 ITGB5 0.3419488 3.938960 1.960886e-04 0.508784638 0.1066896
g2 and g2 look the same and each has 15568 entries (genes)
How to calculate p value and correlation coefficient for Spearman’s correlation for this data for 40000 permutations?
I joined all 3 groups, g1, g2, g3, and extracted only Beta (B)
I got this data frame, with matching 15568 entries:
Beta1 Beta2 Beta3
EXykpF1BRREdXnv9Xk -4.970533 -4.752771 -5.404054
0Tm7hdRJxd9zoevPlA -4.862168 -5.147294 -3.909654
u_M5UdFdhg3lZ.qe64 -5.368846 -5.396183 -5.405330
lkkLCXcnzL9NXFXTl4 -4.367704 -4.847795 -5.148524
0Uu3XrB6Bd14qoNeuc -5.286592 -4.949305 -5.278798
3h7Sgq2i3sAUkxL_n8 -4.579528 -2.403240 -4.710600
To calculate Spearman’s I could use in R:
> cor(d,use="pairwise.complete.obs",method="spearman")
Beta1 Beta2 Beta3
Beta1 1.000000000 0.234171932 0.002474729
Beta2 0.234171932 1.000000000 -0.005469126
Beta3 0.002474729 -0.005469126 1.000000000
Can someone please tell me what would be the method to use to get correlation coefficient and p value taken in account number of permutations? And am I am correct to use Beta in order to do correlation in between these 3 groups?
Thanks!
Upvotes: 2
Views: 791
Reputation: 3791
A hint to access the correlation coefficient
and p-value
using the psych
package. I'm going to use the mtcars
dataset instead of re-typing your dataset as it is not in an easy copy-paste (dput(df))
format.
library(psych)
corr.test.col.1to4 <- corr.test(mtcars[1:4], method = "spearman", use = "complete.obs")
names(corr.test.col.1to4)
#1] "r" "n" "t" "p" "se" "sef" "adjust" "sym" "ci" "ci.adj"
# [11] "Call"
# -------------------------------------------------------------------------
# in your case you probably want to do
#cor.test.beta <- corr.test(d[c("Beta1","Beta2", "Beta3")], method = "spearman", use = "complete.obs")
# -------------------------------------------------------------------------
As you can see from the output of names(corr.test.col.1to4)
:
r: correlation coefficient
n: number of observation
p: p.value
se: standard error
ci: confidence intervals
So, if you want the correlation coefficient you can pull the values out using
corr.test.col.1to4$r
# mpg cyl disp hp
# mpg 1.0000000 -0.9108013 -0.9088824 -0.8946646
# cyl -0.9108013 1.0000000 0.9276516 0.9017909
# disp -0.9088824 0.9276516 1.0000000 0.8510426
# hp -0.8946646 0.9017909 0.8510426 1.0000000
The p-values
corr.test.col.1to4$p
# mpg cyl disp hp
# mpg 0.000000e+00 2.345144e-12 2.548135e-12 1.017194e-11
# cyl 4.690287e-13 0.000000e+00 1.365266e-13 5.603057e-12
# disp 6.370336e-13 2.275443e-14 0.000000e+00 6.791338e-10
# hp 5.085969e-12 1.867686e-12 6.791338e-10 0.000000e+00
The standard errors
corr.test.col.1to4$se
# mpg cyl disp hp
# mpg 0.00000000 0.07537483 0.07614303 0.08156289
# cyl 0.07537483 0.00000000 0.06818175 0.07890355
# disp 0.07614303 0.06818175 0.00000000 0.09586909
# hp 0.08156289 0.07890355 0.09586909 0.00000000
The confidence intervals
corr.test.col.1to4$ci
# lower r upper p
# mpg-cyl -0.9559077 -0.9108013 -0.8237102 4.690287e-13
# mpg-disp -0.9549362 -0.9088824 -0.8200941 6.370336e-13
# mpg-hp -0.9477078 -0.8946646 -0.7935207 5.085969e-12
# cyl-disp 0.8557708 0.9276516 0.9643958 2.275443e-14
# cyl-hp 0.8067919 0.9017909 0.9513377 1.867686e-12
# disp-hp 0.7143279 0.8510426 0.9251848 6.791338e-10
You can save the output on a variable and do further formatting to make the reporting just.
Your second question Am I correct to use Beta
in order to do correlation in between these 3 groups? is a valid question which you need to answer/address depending on the question you want to answer as well as report it in such a way that the corr is computed on variable Beta
and justify the choice of the variable Beta
in your report.
Hope that helps.
Upvotes: 2