Reputation: 11
My data frame is like this:
YearMonth Number of Visitors
Jan-91 177400
Feb-91 190600
Mar-91 189200
Apr-91 168000
May-91 161400
I want to convert the index to something like 1991-01. I tried index.to_datetime but received an error:
ValueError: day is out of range for month
My code is as below:
dataC = pd.read_csv('Visitors.csv', index_col='YearMonth', parse_dates=True, dayfirst=True)
dataC.index = dataC.index.to_datetime(dayfirst=True)
Could I manage to achieve my goal?
Upvotes: 1
Views: 328
Reputation: 862406
For me first part of solution working for me:
import pandas as pd
from io import StringIO
pd.options.display.max_columns = 20
temp="""YearMonth,Number of Visitors
Jan-91,177400
Feb-91,190600
Mar-91,189200
Apr-91,168000
May-91,161400"""
#after testing replace 'pd.compat.StringIO(temp)' to 'Visitors.csv'
dataC = pd.read_csv(StringIO(temp), index_col='YearMonth', parse_dates=True)
print (dataC)
Number of Visitors
YearMonth
1991-01-01 177400
1991-02-01 190600
1991-03-01 189200
1991-04-01 168000
1991-05-01 161400
print (dataC.index)
DatetimeIndex(['1991-01-01', '1991-02-01', '1991-03-01', '1991-04-01',
'1991-05-01'],
dtype='datetime64[ns]', name='YearMonth', freq=None)
If want different format one possible solution is month period by DataFrame.to_period
:
dataC = dataC.to_period('m')
print (dataC)
Number of Visitors
YearMonth
1991-01 177400
1991-02 190600
1991-03 189200
1991-04 168000
1991-05 161400
print (dataC.index)
PeriodIndex(['1991-01', '1991-02', '1991-03', '1991-04', '1991-05'],
dtype='period[M]', name='YearMonth', freq='M')
In your solution if want convert index to DatemeIndex
correct solution is to_datetime
with format
parameter:
dataC.index = pd.to_datetime(dataC.index, format='%b-%y')
Upvotes: 2