Reputation: 23
I have a table with order | place | date and want to group and count each order at one place in a row if it was on the next day from the previous order (time difference <= 1 day). Grouped orders to show earlier date and instances count. Please see example below.
Input:
| Order | Place | Date |
|-------|-------|----------|
| 11 | A | 01.11.19 |
| 11 | A | 02.11.19 |
| 11 | A | 05.11.19 |
| 22 | B | 01.11.19 |
| 22 | D | 02.11.19 |
| 22 | D | 03.11.19 |
| 33 | A | 01.11.19 |
Output:
| Order | Place | Date | Count |
|-------|-------|----------|-------|
| 11 | A | 01.11.19 | 2 |
| 11 | A | 05.11.19 | 1 |
| 22 | B | 01.11.19 | 1 |
| 22 | D | 02.11.19 | 2 |
| 33 | A | 01.11.19 | 1 |
Upvotes: 2
Views: 223
Reputation: 29109
Here is another solution using dplyr
:
library(dplyr)
df1 %>%
mutate(Date = as.Date(Date, "%d.%m.%y")) %>%
group_by(Order, Place, DateLag = !((Date - lag(Date, default = first(Date)))>1)) %>%
summarise(Date = first(Date), Count = n()) %>%
ungroup %>% select(-DateLag) %>%
arrange(Order, Place, Date)
># # A tibble: 5 x 4
># Order Place Date Count
># <int> <chr> <date> <int>
># 1 11 A 2019-11-01 2
># 2 11 A 2019-11-05 1
># 3 22 B 2019-11-01 1
># 4 22 D 2019-11-02 2
># 5 33 A 2019-11-01 1
Data:
read.table(text=" Order Place Date
11 A 01.11.19
11 A 01.11.19
11 A 05.11.19
22 B 01.11.19
22 D 02.11.19
22 D 03.11.19
33 A 01.11.19", header=T, stringsAsFactors=F) -> df1
Upvotes: 2