Reputation: 4062
I am not confident enough to try proving properties about the AVL tree that is there, so I want to try something simpler. I could implement it on my own, but do not want to spend time doing that if it is already hiding in the library somewhere.
Upvotes: 1
Views: 101
Reputation: 12113
You could use a list of pairs and the notion of membership can then be encoded via Any
.
Bits of a very basic library:
open import Data.List.Base using (List)
open import Data.List.Relation.Unary.Any
open import Data.Maybe
open import Data.Product
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
AssocList : Set → Set → Set
AssocList A B = List (A × B)
private
variable
A B : Set
_∈_ : A → AssocList A B → Set
a ∈ abs = Any ((a ≡_) ∘ proj₁) abs
module Decidable {A : Set} (_≟_ : Decidable {A = A} _≡_) where
_∈?_ : Decidable (_∈_ {A} {B})
a ∈? abs = any ((a ≟_) ∘ proj₁) abs
_‼_ : (abs : AssocList A B) (a : A) → Maybe B
abs ‼ a with a ∈? abs
... | yes p = just (proj₂ (lookup p))
... | no ¬p = nothing
Upvotes: 2