Reputation: 98
I'm trying to compile a function that does some computation on an image patch using numba. Here is part of the code:
@jit(nopython=True, parallel=True)
def value_at_patch(img, coords, imgsize, patch_radius):
x_center = coords[0]; y_center = coords[1];
r = patch_radius
s = 2*r+1
xvec = np.arange(x_center-r, x_center+r+1)
xvec[xvec <= 0] = 0 #prevent negative index
xvec = xvec.astype(int)
yvec = np.arange(y_center-r, y_center+r+1)
yvec[yvec <= 0] = 0
yvec = yvec.astype(int)
A = np.zeros((s,s))
#do some parallel computation on A
p = np.any(A)
return p
I'm able to compile the function, but when I run it, I get the following error message:
Failed in nopython mode pipeline (step: nopython frontend)
Invalid use of BoundFunction(array.astype for array(float64, 1d, C)) with parameters (Function(<class 'int'>))
* parameterized
[1] During: resolving callee type: BoundFunction(array.astype for array(float64, 1d, C))
[2] During: typing of call at <ipython-input-17-90e27ac302a8> (42)
File "<ipython-input-17-90e27ac302a8>", line 42:
def value_at_patch(img, coords, imgsize, patch_radius):
<source elided>
xvec[xvec <= 0] = 0 #prevent negative index
xvec = xvec.astype(int)
^
I checked the numba documentation and np.astype should be supported with just one argument. Do you know what could be causing the problem?
Upvotes: 7
Views: 3469
Reputation: 7226
Use np.int64
in place of int
in following places:
xvec = xvec.astype(np.int64)
yvec = yvec.astype(np.int64)
Upvotes: 8