Reputation: 167
I would like to count occurences of one dataframe in another dataframe and output the counts of matches.
df
group1 group2
0 orange orange
1 apple apple
2 banana pear
3 banana banana
.
fruit_df
fruits
0 orange
1 banana
So:
groups = ["group1", "group2"]
matrix = pd.DataFrame()
for group in groups:
out = fruit_df["fruits"].isin(df[group]).astype(int)
matrix = pd.concat([matrix, out], axis = 1)
matrix.columns = groups
matrix = matrix.rename(index = fruit_df["fruits"])
Results in:
matrix
group1 group2
orange 1 1
banana 1 1
What I would like is:
matrix
group1 group2
orange 1 1
banana 2 1
Upvotes: 2
Views: 72
Reputation: 862661
Use value_counts
per columns, select by values from fruit_df['fruits']
by DataFrame.loc
and if necessary replace missing values to 0
and convert to integers:
df = df.apply(pd.value_counts).loc[fruit_df['fruits']].fillna(0).astype(int)
print (df)
group1 group2
orange 1 1
banana 2 1
Upvotes: 3
Reputation: 756
Here's one of the way you could try
temp_df = pd.melt(df, var_name='group', value_name='fruits')
temp_df['count'] = 1
df_count = temp_df.pivot_table(index=['fruits'], columns=['group'], values='count', aggfunc=np.sum).reset_index()
matrix = fruits_df.merge(df_count)
matrix.set_index('fruits')
print(matrix)
The result is
Upvotes: 3