Reputation: 199
I used pytorch to build a segmentation model that uses the BatchNormalization layer. I found that when I set model.eval()
on the test, the test result will be 0. If I don't set model.eval()
, it will perform well.
I tried to search for related questions, but I got the conclusion that model.eval()
can fix the parameters of BN
, but I am still confused about how to solve this problem.
My batchsize is 1 and this is my model:
import torch
import torch.nn as nn
class Encode_Block(nn.Module):
def __init__(self, in_feat, out_feat):
super(Encode_Block, self).__init__()
self.conv1 = Res_Block(in_feat, out_feat)
self.conv2 = Res_Block_identity(out_feat, out_feat)
def forward(self, inputs):
outputs = self.conv1(inputs)
outputs = self.conv2(outputs)
return outputs
class Decode_Block(nn.Module):
def __init__(self, in_feat, out_feat):
super(Decode_Block, self).__init__()
self.conv1 = Res_Block(in_feat, out_feat)
self.conv2 = Res_Block_identity(out_feat, out_feat)
def forward(self, inputs):
outputs = self.conv1(inputs)
outputs = self.conv2(outputs)
return outputs
class Conv_Block(nn.Module):
def __init__(self, in_feat, out_feat):
super(Conv_Block, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_feat, out_feat, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
)
def forward(self, inputs):
outputs = self.conv1(inputs)
return outputs
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Res_Block(nn.Module):
def __init__(self, inplanes, planes, stride=1):
super(Res_Block, self).__init__()
self.conv_input = conv1x1(inplanes, planes)
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn = nn.BatchNorm2d(planes)
self.relu = nn.LeakyReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.conv3 = conv1x1(planes, planes)
self.stride = stride
def forward(self, x):
residual = self.conv_input(x)
out = self.conv1(x)
out = self.bn(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn(out)
out += residual
out = self.relu(out)
return out
class Res_Block_identity(nn.Module):
def __init__(self, inplanes, planes, stride=1):
super(Res_Block_identity, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn = nn.BatchNorm2d(planes)
self.relu = nn.LeakyReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.conv3 = conv1x1(planes, planes)
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn(out)
out += residual
out = self.relu(out)
return out
class UpConcat(nn.Module):
def __init__(self, in_feat, out_feat):
super(UpConcat, self).__init__()
self.de_conv = nn.ConvTranspose2d(in_feat, out_feat, kernel_size=2, stride=2)
def forward(self, inputs, down_outputs):
outputs = self.de_conv(inputs)
out = torch.cat([down_outputs, outputs], 1)
return out
class Res_UNet(nn.Module):
def __init__(self, num_channels=1, num_classes=1):
super(Res_UNet, self).__init__()
flt = 64
self.down1 = Encode_Block(num_channels, flt)
self.down2 = Encode_Block(flt, flt * 2)
self.down3 = Encode_Block(flt * 2, flt * 4)
self.down4 = Encode_Block(flt * 4, flt * 8)
self.down_pool = nn.MaxPool2d(kernel_size=2)
self.bottom = Encode_Block(flt * 8, flt * 16)
self.up_cat1 = UpConcat(flt * 16, flt * 8)
self.up_conv1 = Decode_Block(flt * 16, flt * 8)
self.up_cat2 = UpConcat(flt * 8, flt * 4)
self.up_conv2 = Decode_Block(flt * 8, flt * 4)
self.up_cat3 = UpConcat(flt * 4, flt * 2)
self.up_conv3 = Decode_Block(flt * 4, flt * 2)
self.up_cat4 = UpConcat(flt * 2, flt)
self.up_conv4 = Decode_Block(flt * 2, flt)
self.final = nn.Sequential(
nn.Conv2d(flt, num_classes, kernel_size=1), nn.Sigmoid()
)
def forward(self, inputs):
down1_feat = self.down1(inputs)
pool1_feat = self.down_pool(down1_feat)
down2_feat = self.down2(pool1_feat)
pool2_feat = self.down_pool(down2_feat)
down3_feat = self.down3(pool2_feat)
pool3_feat = self.down_pool(down3_feat)
down4_feat = self.down4(pool3_feat)
pool4_feat = self.down_pool(down4_feat)
bottom_feat = self.bottom(pool4_feat)
up1_feat = self.up_cat1(bottom_feat, down4_feat)
up1_feat = self.up_conv1(up1_feat)
up2_feat = self.up_cat2(up1_feat, down3_feat)
up2_feat = self.up_conv2(up2_feat)
up3_feat = self.up_cat3(up2_feat, down2_feat)
up3_feat = self.up_conv3(up3_feat)
up4_feat = self.up_cat4(up3_feat, down1_feat)
up4_feat = self.up_conv4(up4_feat)
outputs = self.final(up4_feat)
return outputs
The model completely fails to segmentation after setting model.eval()
, but the model is good after model.eval()
is removed. I am confused about this, and is model.eval()
necessary in the test?
Upvotes: 5
Views: 2808
Reputation: 1098
BatchNorm layers keeps running estimates of its computed mean and variance during training model.train()
, which are then used for normalization during evaluation model.eval()
.
Each layer has it own statistics of the mean and variance of its outputs/activations.
Since you are reusing your BatchNorm layer self.bn = nn.BatchNorm2d(planes)
multiple times, the statics get mixed up and don't represent the actual mean and variance.
So you should create a new BatchNorm layer for every time you use it.
EDIT: I just read that your batch_size is 1, which could also be the core of your problem: see Tensorflow and Batch Normalization with Batch Size==1 => Outputs all zeros
Upvotes: 4