Reputation: 145
I have a dataframe such as:
A B C
27.00 9.90 6.24899992
18.00 6.90 4.827007354
15.00 4.20 2.252776065
7.50 2.90 1.673376053
3.00 3.50 3.233439065
4.00 1.20 4.254737365
3.00 2.30 1.257349325
0 8.90 0.254932365
1.00 0.90 2.233293435
now If Column A have 0, I want to drop rest of data in Column B and C from 5 previous row to the bottom row like this:
A B C
27.00 9.90 6.24899992
18.00 6.90 4.827007354
15.00 NaN NaN
7.50 NaN NaN
3.00 NaN NaN
4.00 NaN NaN
3.00 NaN NaN
0 NaN NaN
1.00 NaN NaN
Another example of my dataframe:
A B C
27.00 9.90 6.24899992
18.00 6.90 4.827007354
15.00 4.20 2.252776065
7.50 2.90 1.673376053
3.00 NaN NaN
4.00 NaN NaN
3.00 NaN NaN
2.80 NaN NaN
1.00 NaN NaN
and The result that I want is just same data because it have not 0 in column A like below:
A B C
27.00 9.90 6.24899992
18.00 6.90 4.827007354
15.00 4.20 2.252776065
7.50 2.90 1.673376053
3.00 NaN NaN
4.00 NaN NaN
3.00 NaN NaN
2.80 NaN NaN
1.00 NaN NaN
How can I achieve that?
Upvotes: 2
Views: 120
Reputation: 862406
If want set 5 values before first 0
and then all values after first 0 to NaN
s in columns B
and C
use:
N = 5
m = df['A'] == 0
idx = next(iter(m.index[m]), df.index[-1] + 1)
print (idx)
2
#if possible less like N rows before first 0 add max
first = max(idx - N, 0)
print (first)
7
df.iloc[first:, df.columns.get_indexer(['B','C'])] = np.nan
print (df)
A B C
0 27.0 9.9 6.249000
1 18.0 6.9 4.827007
2 15.0 NaN NaN
3 7.5 NaN NaN
4 3.0 NaN NaN
5 4.0 NaN NaN
6 3.0 NaN NaN
7 0.0 NaN NaN
8 1.0 NaN NaN
If no value 0
in column A
:
N = 5
m = df['A'] == 0
idx = next(iter(m.index[m]), df.index[-1] + 1)
print (idx)
9
#if possible less like N rows before first 0 add max
first = max(idx - N, 0)
print (first)
4
df.iloc[first:, df.columns.get_indexer(['B','C'])] = np.nan
print (df)
A B C
0 27.0 9.9 6.249000
1 18.0 6.9 4.827007
2 15.0 4.2 2.252776
3 7.5 2.9 1.673376
4 3.0 NaN NaN
5 4.0 NaN NaN
6 3.0 NaN NaN
7 10.0 NaN NaN
8 1.0 NaN NaN
First solution:
#create mask
m = df['A'] == 0
#cumulative sum of mask - return Trues for all values after first 0
m1 = m.cumsum() > 0
#counter of values above 0 with swapping order by indexing [::-1] and cumulative sum
s = m.iloc[::-1].cumsum()
#create counter and compare by 5
m2 = s.groupby(s).cumcount() < 5
#chain masks by | for bitwise OR
mask = m1 | m2.sort_index()
#set NaNs by mask
df[['B','C']] = df[['B','C']].mask(mask)
print (df)
Upvotes: 3