Clara Chaouat
Clara Chaouat

Reputation: 21

sklearn Logistic Regression ValueError: X has 42 features per sample; expecting 1423

I'm stuck trying to fix an issue. Here is what I'm trying to do :

I'd like to predict missing values (Nan) (categorical one) using logistic regression. Here is my code :

df_1 : my dataset with missing values only in the "Metier" feature (missing values I'm trying to predict)

X_train = pd.get_dummies(df_1[df_1['Metier'].notnull()].drop(columns='Metier'),drop_first = True)
X_test = pd.get_dummies(df_1[df_1['Metier'].isnull()].drop(columns='Metier'),drop_first = True,dummy_na = True)

Y_train = df_1[df_1['Metier'].notnull()]['Metier']
Y_test = df_1[df_1['Metier'].isnull()]['Metier']

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)

classifier.fit(X_train, Y_train)

classifier.score(X_train,Y_train) = 0.705112088833019

BUT when I'm trying to get the prediction on Y_test It says :

ValueError: X has 42 features per sample; expecting 1423

I would highly appreciate If someone could give me a hand.

Thanks a lot :)

Upvotes: 2

Views: 2453

Answers (1)

Chris
Chris

Reputation: 29732

Rule of thumb is to never use pandas.get_dummies on multiple dataframe. It does not guarantee you the same dimension.

import pandas as pd

print(pd.get_dummies(['a', 'b', 'c']))
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1

print(pd.get_dummies(['b', 'c']))
   b  c
0  1  0
1  0  1

It is only safe if you do pandas.get_dummies first then divide into x_train and x_test. But instead, you can use sklearn.preprocessing.OneHotEncoder:

import numpy as np
from sklearn.preprocessing import OneHotEncoder

ohe = OneHotEncoder(sparse=False)

ohe.fit_transform(np.reshape(['a', 'b', 'c'], (-1, 1)))

array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

ohe.transform(np.reshape(['b', 'c'], (-1, 1))) # Its transform, NOT fit_transform
array([[0., 1., 0.],
       [0., 0., 1.]])

Notice that now it properly asserts two different inputs result in the same number of columns.

Upvotes: 1

Related Questions