Reputation: 2734
What is the computational cost of the remainder
function, is there a specific instruction to calculate it in a cheap way in a specific case?
I need to transform a mathematical variable x into the range of I=[-0.5; 0.5) from R=[-2; 2). While x is not element of I, then x is shifted towards I by repeatedly adding or subtracting 1 to the value of x. x is represented with double x
in my code. I need the fastest way of this transformation for this I and R values but wider R ranges can be also interesting.
The function I was suggested to use was the naive implementation following the description:
void shift_to_I(double& x) // version 1
{
while (x < -0.5)
x += 1;
while (x >= 0.5)
x -= 1;
}
Not only for speed considerations but also for code quality I was thinking of using remainder
from <cmath>
introduced in c++11. With remainder
the code shortens to
void shift_to_I(double& x) // version 2
{
x = remainder(x,1);
}
I had to realize though that it was slower than the original function on my architecture (Intel i7 whatver with VC++). I believed there was a dedicated instruction for this purpose, but either the compiler doesn't know it or it doesn't exist. For wider R interval (on my architecture it is around [-25; 25)) the second version will be faster but I need a code that is fast for narrow intervals too. clang and gcc specific solutions are also welcomed.
Upvotes: 2
Views: 450
Reputation: 26272
This question is compiler and implementation dependent.
For example, on my machine with GCC 8.3:
Without -ffast-math
, std::remainder
translates into a call to this function:
double __remainder(double x, double y)
{
if (((__builtin_expect (y == 0.0, 0) && ! isnan(x)) || (__builtin_expect(isinf(x), 0) && ! isnan(y))) && _LIB_VERSION != _IEEE_)
return __kernel_standard(x, y, 28);
return __ieee754_remainder(x, y);
}
with __ieee754_remainder
looking like this:
double __ieee754_remainder(double x, double y)
{
double z, d, xx;
int4 kx, ky, n, nn, n1, m1, l;
mynumber u, t, w = {{0, 0}}, v = {{0, 0}}, ww = {{0, 0}}, r;
u.x = x;
t.x = y;
kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/
t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */
ky = t.i[HIGH_HALF];
/*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/
if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
{
SET_RESTORE_ROUND_NOEX(FE_TONEAREST);
if (kx + 0x00100000 < ky)
return x;
if ((kx - 0x01500000) < ky)
{
z = x / t.x;
v.i[HIGH_HALF] = t.i[HIGH_HALF];
d = (z + big.x) - big.x;
xx = (x - d * v.x) - d * (t.x - v.x);
if (d - z != 0.5 && d - z != -0.5)
return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
else
{
if (fabs(xx) > 0.5 * t.x)
return (z > d) ? xx - t.x : xx + t.x;
else
return xx;
}
} /* (kx<(ky+0x01500000)) */
else
{
r.x = 1.0 / t.x;
n = t.i[HIGH_HALF];
nn = (n & 0x7ff00000) + 0x01400000;
w.i[HIGH_HALF] = n;
ww.x = t.x - w.x;
l = (kx - nn) & 0xfff00000;
n1 = ww.i[HIGH_HALF];
m1 = r.i[HIGH_HALF];
while (l > 0)
{
r.i[HIGH_HALF] = m1 - l;
z = u.x * r.x;
w.i[HIGH_HALF] = n + l;
ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
d = (z + big.x) - big.x;
u.x = (u.x - d * w.x) - d * ww.x;
l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
}
r.i[HIGH_HALF] = m1;
w.i[HIGH_HALF] = n;
ww.i[HIGH_HALF] = n1;
z = u.x * r.x;
d = (z + big.x) - big.x;
u.x = (u.x - d * w.x) - d * ww.x;
if (fabs(u.x) < 0.5 * t.x)
return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
else if (fabs(u.x) > 0.5 * t.x)
return (d > z) ? u.x + t.x : u.x - t.x;
else
{
z = u.x / t.x;
d = (z + big.x) - big.x;
return ((u.x - d * w.x) - d * ww.x);
}
}
} /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */
else
{
if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
{
y = fabs(y) * t128.x;
z = __ieee754_remainder(x, y) * t128.x;
z = __ieee754_remainder(z, y) * tm128.x;
return z;
}
else
{
if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
(ky > 0 || t.i[LOW_HALF] != 0))
{
y = fabs(y);
z = 2.0 * __ieee754_remainder(0.5 * x, y);
d = fabs(z);
if (d <= fabs(d - y))
return z;
else if (d == y)
return 0.0 * x;
else
return (z > 0) ? z - y : z + y;
}
else /* if x is too big */
{
if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
return (x * y) / (x * y);
else if (kx >= 0x7ff00000 /* x not finite */
|| (ky > 0x7ff00000 /* y is NaN */
|| (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
return (x * y) / (x * y);
else
return x;
}
}
}
}
Pretty far from a single machine instruction.
With -ffast-math
, single fprem1
assembly instruction is used.
Upvotes: 3