Reputation: 749
Given the following data,
import pandas as pd
data = [['AAA','2019-01-01', 10], ['AAA','2019-01-02', 21],
['AAA','2019-02-01', 30], ['AAA','2019-02-02', 45],
['BBB','2019-01-01', 50], ['BBB','2019-01-02', 60],
['BBB','2019-02-01', 70],['BBB','2019-02-02', 59]]
dfx = pd.DataFrame(data, columns = ['NAME', 'TIMESTAMP','VALUE'])
NAME TIMESTAMP VALUE
0 AAA 2019-01-01 10
1 AAA 2019-01-02 21
2 AAA 2019-02-01 30
3 AAA 2019-02-02 45
4 BBB 2019-01-01 50
5 BBB 2019-01-02 60
6 BBB 2019-02-01 70
7 BBB 2019-02-02 59
Is it possible to compare the last value of each group ('NAME') to the mean of the previous 3 rows, so the expected output would be somewhat like the following,
NAME TIMESTAMP VALUE RESULT
0 AAA 2019-01-01 10
1 AAA 2019-01-02 21
2 AAA 2019-02-01 30
3 AAA 2019-02-02 45 False
4 BBB 2019-01-01 50
5 BBB 2019-01-02 60
6 BBB 2019-02-01 70
7 BBB 2019-02-02 59 True
So the Result is False for Group 'AAA' because the value 45 is 'Greater Than' the mean of the previous 3 values (10+21+30), while the Result is True for Group 'BBB' because the value 59 is 'Lesser Than' the mean of the previous 3 values (50+60+70).
Regards.
Upvotes: 0
Views: 232
Reputation: 59
This should work:
def compare(a, b):
if a > b:
return False
elif a < b:
return True
dfx['rolling_mean'] = dfx.VALUE.rolling(3, 3).mean()
s = dfx.duplicated('NAME', keep = 'last')
dfx['RESULT'] = dfx[~s].apply(lambda x: compare(x.VALUE, x.rolling_mean), axis = 1)
Upvotes: 2
Reputation: 323306
Use duplicated
s=dfx.duplicated('NAME',keep='last')
dfx['RESULT']=dfx[~s].VALUE.le(dfx[s].groupby('NAME')['VALUE'].mean().values)
dfx
NAME TIMESTAMP VALUE RESULT
0 AAA 2019-01-01 10 NaN
1 AAA 2019-01-02 21 NaN
2 AAA 2019-02-01 30 NaN
3 AAA 2019-02-02 45 False
4 BBB 2019-01-01 50 NaN
5 BBB 2019-01-02 60 NaN
6 BBB 2019-02-01 70 NaN
7 BBB 2019-02-02 59 True
Upvotes: 1