Reputation: 1287
I have a data frame which is,
ip_df:
name class sec details
0 tom I a [{'class':'I','sec':'a','subjects':['numbers','ethics']},{'class':'I','sec':'b','subjects':['numbers','moral-science']},{'class':'I','sec':'c','subjects':['moral-science','ethics']},{'class':'I','subjects':['numbers','ethics1']}]
1 sam I d [{'class':'I','sec':'a','subjects':['numbers','ethics']},{'class':'I','sec':'b','subjects':['numbers','moral-science']},{'class':'I','sec':'c','subjects':['moral-science','ethics']},{'class':'I','subjects':['numbers','ethics1']}]
and the resultant data frame is suppose to be,
op_df:
name class sec subjects
0 tom I a ['numbers','ethics']
1 sam I d ['numbers','ethics1']
The "op_df" has to be framed based on the following conditions,
Upvotes: 1
Views: 53
Reputation: 862691
Solution if need first matched value by both conditions with next
and iter
trick for add default value [0, 0]
if no matched:
final = []
for a, b, c in zip(df['class'], df['sec'], df['details']):
out = []
for x in c:
m1 = x['class'] == a
if m1 and x.get('sec') == b:
out.append(x['subjects'])
elif m1 and 'sec' not in list(x.keys()):
out.append(x['subjects'])
final.append(next(iter(out), [0,0]))
df['subjects'] = final
Upvotes: 2