Reputation: 768
There is a function in pyspark:
def sum(a,b):
c=a+b
return c
It has to be run on each record of a very very large dataframe using spark sql:
x = sum(df.select["NUM1"].first()["NUM1"], df.select["NUM2"].first()["NUM2"])
But this would run it only for the first record of the df and not for all rows. I understand it could be done using a lambda, but I am not able to code it in the desired way.
In reality; c would be a dataframe and the function would be doing a lot of spark.sql stuff and return it. I would have to call that function for each row.
I guess, I will try to pick it up using this sum(a,b)
as an analogy.
+----------+----------+-----------+
| NUM1 | NUM2 | XYZ |
+----------+----------+-----------+
| 10 | 20 | HELLO|
| 90 | 60 | WORLD|
| 50 | 45 | SPARK|
+----------+----------+-----------+
+----------+----------+-----------+------+
| NUM1 | NUM2 | XYZ | VALUE|
+----------+----------+-----------+------+
| 10 | 20 | HELLO|30 |
| 90 | 60 | WORLD|150 |
| 50 | 45 | SPARK|95 |
+----------+----------+-----------+------+
Python: 3.7.4
Spark: 2.2
Upvotes: 4
Views: 17149
Reputation: 247
Use the below simple approach:
1. Import pyspark.sql functions
from pyspark.sql import functions as F
2. Use F.expr() function
df.withColumn("VALUE",F.expr("NUM1+NUM2")<br>
Upvotes: 0
Reputation: 41
We can do it in below ways and while registering udf 3rd argument that is return type is not mandatory.
from pyspark.sql import functions as F
df1 = spark.createDataFrame([(10,20,'HELLO'),(90,60,'WORLD'),(50,45,'SPARK')],['NUM1','NUM2','XYZ'])
df1.show()
df2=df1.withColumn('VALUE',F.expr('NUM1 + NUM2'))
df2.show(3,False)
+----+----+-----+-----+
|NUM1|NUM2|XYZ |VALUE|
+----+----+-----+-----+
|10 |20 |HELLO|30 |
|90 |60 |WORLD|150 |
|50 |45 |SPARK|95 |
+----+----+-----+-----+
(or)
def sum(c1,c2):
return c1+c2
spark.udf.register('sum_udf1',sum)
df2=df1.withColumn('VALUE',F.expr("sum_udf1(NUM1,NUM2)"))
df2.show(3,False)
+----+----+-----+-----+
|NUM1|NUM2|XYZ |VALUE|
+----+----+-----+-----+
|10 |20 |HELLO|30 |
|90 |60 |WORLD|150 |
|50 |45 |SPARK|95 |
+----+----+-----+-----+
(or)
sum_udf2=F.udf(lambda x,y: x+y)
df2=df1.withColumn('VALUE',sum_udf2('NUM1','NUM2'))
df2.show(3,False)
+----+----+-----+-----+
|NUM1|NUM2|XYZ |VALUE|
+----+----+-----+-----+
|10 |20 |HELLO|30 |
|90 |60 |WORLD|150 |
|50 |45 |SPARK|95 |
+----+----+-----+-----+
Upvotes: 2
Reputation: 591
You can use .withColumn function:
from pyspark.sql.functions import col
from pyspark.sql.types import LongType
df.show()
+----+----+-----+
|NUM1|NUM2| XYZ|
+----+----+-----+
| 10| 20|HELLO|
| 90| 60|WORLD|
| 50| 45|SPARK|
+----+----+-----+
def mysum(a,b):
return a + b
spark.udf.register("mysumudf", mysum, LongType())
df2 = df.withColumn("VALUE", mysum(col("NUM1"),col("NUM2"))
df2.show()
+----+----+-----+-----+
|NUM1|NUM2| XYZ|VALUE|
+----+----+-----+-----+
| 10| 20|HELLO| 30|
| 90| 60|WORLD| 150|
| 50| 45|SPARK| 95|
+----+----+-----+-----+
Upvotes: 3