Reputation: 915
In Python, say you have a 2D array of zeros of shape (N,4,4):
z = array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
and you have a 2D array of indices:
i = array([[1, 1, 1, 1],
[1, 0, 0, 0],
[0, 0, 1, 1],
[1, 1, 1, 0]])
and some valued 2D array:
v = array([[ 2., 4., 10., 7.],
[10., 9., 9., 2.],
[ 3., 8., 8., 8.],
[ 8., 6., 10., 1.]])
Is there a way to fill the elements of z
with the values of v
but in the slices denoted by i
, without using loops?
Note: Is there a way to do this in a scalable fashion such that if you had an N channel array z
, where N>>1, you would not need to directly index z[i]
when filling it with values from v
?
For clarity, the resulting z
array would look like the following:
z = array([[[0., 0., 0., 0.],
[0., 9., 9., 2.],
[3., 8., 0., 0.],
[0., 0., 0., 1.]],
[[2., 4., 10., 7.],
[10., 0., 0., 0.],
[0., 0., 8., 8.],
[8, 6., 10., 0.]]])
Obviously, using something like:
z = v[i,:,:]
would never work but maybe there's a way to use rows, cols
to do this?
Many thanks in advance!
Edit:
For clarity here is a similar example but for a 3D z
as requested in the comments:
z = array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
i = array([[2, 1, 2, 1],
[1, 1, 2, 1],
[1, 1, 1, 1],
[1, 0, 0, 1]])
v = array([[5., 5., 0., 4.],
[4., 6., 8., 3.],
[4., 0., 4., 8.],
[7., 6., 5., 7.]])
z
would become:
z = array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 6., 5., 0.]],
[[0., 5., 0., 4.],
[4., 6., 0., 3.],
[4., 0., 4., 8.],
[7., 0., 0., 7.]],
[[5., 0., 0., 0.],
[0., 0., 8., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
Upvotes: 1
Views: 130
Reputation: 3495
Possible using numpy.where
:
z[0] = np.where(i, z[0], v)
z[1] = np.where(1 - i, z[1], v)
Output:
array([[[ 0., 0., 0., 0.],
[ 0., 9., 9., 2.],
[ 3., 8., 0., 0.],
[ 0., 0., 0., 1.]],
[[ 2., 4., 10., 7.],
[10., 0., 0., 0.],
[ 0., 0., 8., 8.],
[ 8., 6., 10., 0.]]])
And after your update, if i
hold the indices of z
to be changed (and opposite from the 0's and 1's in your example), it can be scaled easily to:
for N in range(z.shape[0]):
z[N] = np.where(i == N, v, z[N])
Or if you really want to avoid loops alltogheter:
z = np.where(i == (np.where(np.ones(len(z.reshape(-1))) == 1)[0] // (z.shape[1] * z.shape[2])).reshape(z.shape), v, z)
Ouput:
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 6., 5., 0.]],
[[0., 5., 0., 4.],
[4., 6., 0., 3.],
[4., 0., 4., 8.],
[7., 0., 0., 7.]],
[[5., 0., 0., 0.],
[0., 0., 8., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
Upvotes: 1
Reputation: 15872
You can always use masks and multiply:
from numpy import array
z = array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
i = array([[1, 1, 1, 1],
[1, 0, 0, 0],
[0, 0, 1, 1],
[1, 1, 1, 0]])
v = array([[ 2., 4., 10., 7.],
[10., 9., 9., 2.],
[ 3., 8., 8., 8.],
[ 8., 6., 10., 1.]])
z[0] = ~i.astype(bool)*v
z[1] = i.astype(bool)*v
Output:
z =
array([[[ 0., 0., 0., 0.],
[ 0., 9., 9., 2.],
[ 3., 8., 0., 0.],
[ 0., 0., 0., 1.]],
[[ 2., 4., 10., 7.],
[10., 0., 0., 0.],
[ 0., 0., 8., 8.],
[ 8., 6., 10., 0.]]])
For more general case:
for ax in np.unique(i):
mask = i == ax
z[ax] = mask*v
print(z)
Output:
[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 6. 5. 0.]]
[[0. 5. 0. 4.]
[4. 6. 0. 3.]
[4. 0. 4. 8.]
[7. 0. 0. 7.]]
[[5. 0. 0. 0.]
[0. 0. 8. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]
Note: Here I assumed the values in i
are same as there are channels in z
. If different, instead of np.unique, you can try:
for i_val,ax in zip(np.unique(i),range(z.shape[0]))::
mask = i == i_val
z[ax] = mask*v
EDIT
A one-liner would be:
>>> z = np.array([*map(i.__eq__,np.unique(i))])*np.array([v]*z.shape[0])
>>> z
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 6., 5., 0.]],
[[0., 5., 0., 4.],
[4., 6., 0., 3.],
[4., 0., 4., 8.],
[7., 0., 0., 7.]],
[[5., 0., 0., 0.],
[0., 0., 8., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
Upvotes: 2
Reputation: 134
Something more complicated without numpy:
r = list(zip(i,v))
z[0] = [[l2[i] if l1[i]==0 else 0 for i in range(4)] for l1, l2 in r ]
z[1] = [[l2[i] if l1[i]==1 else 0 for i in range(4)] for l1, l2 in r ]
Upvotes: 1