Reputation: 868
I'm trying to implement my own fft in MATLAB the following way:
function z=FastFourierTransform(x)
N=length(x);
if N <= 1
z = x;
else
range = (0:N/2-1);
e = exp(-2i*pi/N).^range;
odd = FastFourierTransform(x(1:2:N-1));
even = e.*FastFourierTransform(x(2:2:N));
z = [even + odd, even - odd];
end
return
Turns out, there seems to be somthing wrong with it since it does not give the same result as the built in function provided by MATLAB.
I'm calling the function the following way:
N = 128;
x = 32*pi*(1:N)'/N;
u = cos(x/16).*(1+sin(x/16));
actualSolution = fft(u);
actualSolution
mySolution = FastFourierTransform(u)';
mySolution
The numbers are always the same but they sometimes differ in their sign.
Upvotes: 1
Views: 142
Reputation: 20765
You have swapped odd and even.
Using this line to compute z
will produce the correct FFT:
z = [odd + even, odd - even];
My guess is that the source of confusion is that Matlab uses 1-based indices, and the pseudocode you used to implement the function uses 0-based indices.
Upvotes: 2