Reputation: 31
I have a dataset 'df' that looks something like this:
MEMBER seen_1 seen_2 seen_3 seen_4 seen_5 seen_6
A 1 0 0 1 0 1
B 1 1 0 0 1 0
C 1 1 1 0 0 1
D 0 0 1 0 0 1
As you can see there are several rows of ones and zeros. Can anyone suggest me a code in python such that I am able to count the number of times '1' occurs continuously before the first occurrence of a 1, 0 and 0 in order. For example, for member A, the first double zero event occurs at seen_2 and seen_3, so the event will be 1. Similarly for the member B, the first double zero event occurs at seen_3 and seen_4 so there are two 1s that occur before this. The resultant table should have a new column 'event' something like this:
MEMBER seen_1 seen_2 seen_3 seen_4 seen_5 seen_6 event
A 1 0 0 1 0 1 1
B 1 1 0 0 1 0 2
C 1 1 1 0 0 1 3
D 0 0 1 0 0 1 1
Upvotes: 2
Views: 100
Reputation: 150735
My approach:
df = df.set_index('MEMBER')
# count 1 on each rows since the last 0
s = (df.stack()
.groupby(['MEMBER', df.eq(0).cumsum(1).stack()])
.cumsum().unstack()
)
# mask of the zeros:
u = s.eq(0)
# look for the first 1 0 0
idx = (~u &
u.shift(-1, axis=1, fill_value=False) &
u.shift(-2, axis=1, fill_value=False) ).idxmax(1)
# look up
df['event'] = s.lookup(idx.index, idx)
Test data:
MEMBER seen_1 seen_2 seen_3 seen_4 seen_5 seen_6
0 A 1 0 1 0 0 1
1 B 1 1 0 0 1 0
2 C 1 1 1 0 0 1
3 D 0 0 1 0 0 1
4 E 1 0 1 1 0 0
Output:
MEMBER seen_1 seen_2 seen_3 seen_4 seen_5 seen_6 event
0 A 1 0 1 0 0 1 1
1 B 1 1 0 0 1 0 2
2 C 1 1 1 0 0 1 3
3 D 0 0 1 0 0 1 1
4 E 1 0 1 1 0 0 2
Upvotes: 2