Reputation: 435
I want to build an object dynamically which allow use to mix the class properties in whichever way they like base on multiple inheritance. This is the expected behaviour. These classes are dataclasses so there won't be many methods in them, mostly data properties.
class Foo():
def bar(self, x):
return x
class FooA(Foo):
def bar(self, x):
p = super().bar(x)
p += __class__.__name__
return p
class FooB(Foo):
def bar(self, x):
p = super().bar(x)
p += __class__.__name__
return p
class FooC(FooA, FooB):
def bar(self, x):
p = super().bar(x)
p += __class__.__name__
return p
f = FooC()
f.bar('S') # SFooBFooAFooC
However this code violate the DRY principle in broad daylight, hence I want to avoid the bar method completely, if there is no special operations in the current class.
Ideally I want something like
@bar_wrapper
class FooA(Foo):
pass
# OR
class FooA(Foo):
__metaclass__ = BarBase
Instead of this full implementation
class FooA(Foo):
def bar(self, x):
p = super().bar(x)
p += __class__.__name__
return p
Essentially is there a way that I extract the middle layer class information in a multi-level inheritance class through a decorator or metaclass (the two options that I can think of)? Anyone has any idea on how to do this?
Upvotes: 3
Views: 78
Reputation: 43166
Write a class decorator that adds the bar
method to the class:
def bar_wrapper(cls):
def bar(self, x):
p = super(cls, self).bar(x)
p += cls.__name__
return p
bar.__module__ = cls.__module__
bar.__qualname__ = '{}.{}'.format(cls.__qualname__, bar.__name__)
cls.bar = bar
return cls
class Foo():
def bar(self, x):
return x
@bar_wrapper
class FooA(Foo):
pass
@bar_wrapper
class FooB(Foo):
pass
@bar_wrapper
class FooC(FooA, FooB):
pass
f = FooC()
print(f.bar('S')) # SFooBFooAFooC
Upvotes: 3