Reputation: 1069
I have a dataframe df
with following information:
df <- structure(list(Samples = structure(c(1L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 2L, 1L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 2L, 1L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 2L, 1L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 2L), .Label = c("Sample1", "Sample10", "Sample2",
"Sample3", "Sample4", "Sample5", "Sample6", "Sample7", "Sample8",
"Sample9"), class = "factor"), patient.vital_status = c(0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L), years = c(3.909589041, 1.457534247,
2.336986301, 5.010958904, 1.665753425, 1.81369863, 1.191780822,
4.687671233, 2.167123288, 1.95890411, 3.909589041, 1.457534247,
2.336986301, 5.010958904, 1.665753425, 1.81369863, 1.191780822,
4.687671233, 2.167123288, 1.95890411, 3.909589041, 1.457534247,
2.336986301, 5.010958904, 1.665753425, 1.81369863, 1.191780822,
4.687671233, 2.167123288, 1.95890411, 3.909589041, 1.457534247,
2.336986301, 5.010958904, 1.665753425, 1.81369863, 1.191780822,
4.687671233, 2.167123288, 1.95890411), Genes = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("A1BG", "A1CF", "A2M",
"A2ML1"), class = "factor"), value = c(0.034459012, 0.017698878,
0.023313851, 0.010456762, 0.032674019, 0.037561831, 0.03380681,
0, 0.019954956, 0.012392427, 0.835801613, 2.265192447, 2.431409095,
5.012117956, 2.139962802, 2.371946704, 4.555234385, 0.550293401,
0.924012327, 2.274642129, 92.85639578, 79.50897642, 23.72187602,
26.86025304, 32.80504253, 222.6449054, 71.78812505, 45.76371588,
29.93976676, 22.97515484, 0.03780441, 0.005825143, 0, 0.002867985,
0.011948708, 0.02060423, 0.004636111, 0.015903347, 0.005473063,
0.033988816)), class = "data.frame", row.names = c(NA, -40L))
I want to loop over the information based on the columns Genes
and value
and get a result. And again I want the result to be added to the dataframe df
. The result will be with low
or high
.
I'm trying to do this with the following code, but it doesn't work:
genes <- as.character(unique(df$Genes))
library(survival)
library(survminer)
for(i in genes){
surv_rnaseq.cut <- surv_cutpoint(
df,
time = "years",
event = "patient.vital_status",
variables = c("Genes","value"))
df$cat <- surv_categorize(surv_rnaseq.cut)
}
Along with the above result I also wanted the summary for surv_rnaseq.cut
for all the four genes with mentioning its name.
Any help please. thanq
Upvotes: 1
Views: 309
Reputation: 887541
An option would be to split by 'genes' (group_split
), loop over the list
, apply the functions and bind the list
elements after creating the column
library(survminer)
library(survival)
library(dplyr)
library(purrr)
df %>%
group_split(Genes) %>%
map_dfr(~ surv_cutpoint(.x,
time = "years",
event = "patient.vital_status",
variables = c("Genes", "value")) %>%
surv_categorize %>%
pull(value) %>%
mutate(.x, cat = .))
# A tibble: 40 x 6
# Samples patient.vital_status years Genes value cat
# <fct> <int> <dbl> <fct> <dbl> <chr>
# 1 Sample1 0 3.91 A1BG 0.0345 high
# 2 Sample2 0 1.46 A1BG 0.0177 high
# 3 Sample3 0 2.34 A1BG 0.0233 high
# 4 Sample4 0 5.01 A1BG 0.0105 high
# 5 Sample5 0 1.67 A1BG 0.0327 high
# 6 Sample6 0 1.81 A1BG 0.0376 high
# 7 Sample7 0 1.19 A1BG 0.0338 high
# 8 Sample8 1 4.69 A1BG 0 low
# 9 Sample9 0 2.17 A1BG 0.0200 high
#10 Sample10 1 1.96 A1BG 0.0124 high
# … with 30 more rows
Upvotes: 1