Reputation: 199
What I have is a data set called 'report' which has details of delivery drivers. 'Pass' means they delivered on time and 'Fail' means they didn't
Name|Outcome
A |Pass
B |Fail
C |Pass
D |Pass
A |Fail
C |Pass
What I want
Name|Pass|Fail|Total
A |1 |1 |2
B |0 |1 |1
C |2 |0 |2
D |1 |0 |1
I tried:
report.groupby(['Name','outcome']).agg(['count'])
but it is not giving me the required output.
Upvotes: 2
Views: 288
Reputation: 13401
One way to do it using pandas.dummies
and groupby
:
report = pd.get_dummies(df1, columns=['outcome']).groupby(['name'], as_index=False).sum().rename(columns={"outcome_Fail":"Fail", "outcome_Pass":"Pass"})
report["Total"] = report["Pass"] + report["Fail"]
print(report)
Output:
name Fail Pass Total
0 A 1 1 2
1 B 1 0 1
2 C 0 2 2
3 D 0 1 1
Upvotes: 0
Reputation: 862791
Use crosstab
with margins=True
and margins_name
parameter:
print (pd.crosstab(df['Name'], df['Outcome'], margins=True, margins_name='Total'))
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
Total 2 4 6
And then remove last row with positions by DataFrame.iloc
:
df = pd.crosstab(df['Name'], df['Outcome'], margins=True, margins_name='Total').iloc[:-1]
print (df)
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
Upvotes: 6
Reputation: 42916
This is pd.crosstab
with sum
over axis=1
:
df = pd.crosstab(df['Name'], df['Outcome'])
df['Total'] = df[['Fail', 'Pass']].sum(axis=1)
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
Or to remove the column axis name, we use rename_axis
:
df = pd.crosstab(df['Name'], df['Outcome']).reset_index().rename_axis(None, axis='columns')
df['Total'] = df[['Fail', 'Pass']].sum(axis=1)
Name Fail Pass Total
0 A 1 1 2
1 B 1 0 1
2 C 0 2 2
3 D 0 1 1
Upvotes: 5
Reputation: 1054
In [1]: from io import StringIO
In [2]: df_string = '''Name|Outcome^M
...: A |Pass^M
...: B |Fail^M
...: C |Pass^M
...: D |Pass^M
...: A |Fail^M
...: C |Pass'''
In [3]: report = pd.read_csv(StringIO(df_string), sep='|')
In [4]: report.assign(count=1).groupby(["Name", "Outcome"])["count"].sum().unstack().assign(Total=lambda df: df.sum(axis=1))
Out[4]:
Outcome Fail Pass Total
Name
A 1.0 1.0 2.0
B 1.0 NaN 1.0
C NaN 2.0 2.0
D NaN 1.0 1.0
Now you can fill NAs values using the fillna(0)
method
Upvotes: 1