Reputation: 53
Due to performance issue, i would like to run in parallel my function in python :
import multiprocessing as mp
source_nodes = [10413173, 10414530, 10414530, 10437199]
sink_nodes = [10420346, 10438770, 10438711, 10414530, 10436258]
path =[]
def createpath(source,sink):
for i in source:
for j in sink:
path = path + list(nx.all_simple_paths(Directed_G,i,j))
return path
From my understanding i must give 1 iterable to apply function. but my idea was to do something like :
results = [pool.apply(createpath, args=(source_nodes, sink_nodes))]
And then don't give any iterable object to applyfunction I managed to get it work, but i don't think it run on parallel.
Do you think i should include the apply function inside the first loop ?
Upvotes: 0
Views: 131
Reputation: 224
from multiprocessing import Pool
source_nodes = [1,2,3,4,5,6]
sink_nodes = [1,1,1,1,1,1,1,1,1]
def sum_values(parameter_tuple):
source,sink, start, stop = parameter_tuple
out = 0
for i in range(start, stop):
val_i = source[i]
for j in sink:
out += val_i*j
return out
if __name__ == "__main__":
params = (source_nodes, sink_nodes, 0, 6)
print(sum_values(params))
with Pool(2) as p:
print(p.map(sum_values, [
(source_nodes, sink_nodes, 0, 3),
(source_nodes, sink_nodes, 3, 6),
]))
You can try to run this one. This runs parallel with map pattern on pool of 2 threads. In this case your output result is the sum of result of each process from pool.
Upvotes: 2