Reputation: 3411
I checked the pytest documentation but I could not find anything relevant. I know pytest --durations=0
will print out the runtime for all the tests. Is there a way to get pytest to also print out the peak memory usage consumed by a function? Otherwise, I can probably just use the decoration function below. But I am wondering if there is a better way to do this.
from functools import wraps
def mem_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Start of function
r0 = resource.getrusage(resource.RUSAGE_SELF)
t0 = datetime.datetime.now()
# Call function
status = func(*args, **kwargs)
# End of function
r1 = resource.getrusage(resource.RUSAGE_SELF)
t1 = datetime.datetime.now()
sys.stderr.write('{}: utime {} stime {} wall {}\n'.format(func.__name__,
datetime.timedelta(seconds=r1.ru_utime - r0.ru_utime),
datetime.timedelta(seconds=r1.ru_stime - r0.ru_stime),
t1 - t0))
sys.stderr.write('{}: mem {} MB ({} GB)\n'.format(func.__name__,
(r1.ru_maxrss - r0.ru_maxrss) / 1000.0,
(r1.ru_maxrss - r0.ru_maxrss) / 1000000.0))
return status
return wrapper
Upvotes: 13
Views: 11265
Reputation: 6473
The pytest-memray
plugin does it out of the box. Link: https://pytest-memray.readthedocs.io/en/latest/index.html.
Upvotes: 0
Reputation: 261
pytest-monitor a new awesome plugins for pytest helps to monitor resources usage, timings, memory and so on. All metrics are stored in an sqlite database for post analysis
check out pytest-monitor from pypi or conda-forge:
Example
$ pytest --db ./monitor.db
$ sqlite3 ./monitor.db
sqlite>.headers on
sqlite>.mode column
Then to show 10 most memory intensive tests:
sqlite> select ITEM, MEM_USAGE from TEST_METRICS ORDER BY MEM_USAGE DESC LIMIT 10;
ITEM|MEM_USAGE
test_api/test_data_get[/data/listdsh]|17.5703125
test_api/test_data_get[/data/listrecipients]|17.97265625
test_api/test_data_get[/data/getuserdetails]|18.125
pytest-monitor
updates its SQLite database incrementally, so you might want to delete monitor.db
file between test runs.
Note that if there is a memory leak in your code, the memory usage can increase test-by-test regardless of in which order you run them. Thus, you might want to run single tests, tests in different order and so on to locate the memory leak.
Upvotes: 26
Reputation: 337
Memory Profiling:
There is no plugin to get memory profiling from the pytest (As far as I know). Use the following link for memory profiling
https://github.com/fabianp/memory_profiler
Other references: https://stackoverflow.com/a/43772305/9595032
Cumulative times:
https://pypi.org/project/pytest-profiling/
But to get Cumulative times of all calls to use plugin pytest-profiling
pip install pytest-profiling
Usage:
pytest -s -v [file_name] --profile
The output will look somewhat like this
Profiling (from /home/work/project/analytics/testing/TestCases/cloud/prof/combined.prof):
Wed Nov 20 12:09:47 2019 /home/work/project/analytics/testing/TestCases/cloud/prof/combined.prof
437977 function calls (380211 primitive calls) in 3.866 seconds
Ordered by: cumulative time
List reduced from 683 to 20 due to restriction <20>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 3.866 3.866 runner.py:107(pytest_runtest_call)
1 0.000 0.000 3.866 3.866 python.py:1457(runtest)
1 0.000 0.000 3.866 3.866 hooks.py:275(__call__)
1 0.000 0.000 3.866 3.866 manager.py:59(<lambda>)
1 0.000 0.000 3.866 3.866 manager.py:65(_hookexec)
1 0.000 0.000 3.866 3.866 callers.py:157(_multicall)
1 0.000 0.000 3.866 3.866 python.py:188(pytest_pyfunc_call)
1 0.001 0.001 3.866 3.866 test_abc.py:46(test_abc)
1 0.000 0.000 3.865 3.865 test_abc.py:9(run_abc_test)
1 0.001 0.001 3.854 3.854 dataAnalyzer.py:826(sanitize_data)
1 0.000 0.000 3.773 3.773 Analyzer.py:563(Traffic)
1 0.000 0.000 3.772 3.772 traffic.py:83(false_alarm_checks)
3 0.000 0.000 3.767 1.256 api.py:60(get)
3 0.000 0.000 3.765 1.255 api.py:135(_get_from_overpass)
3 0.000 0.000 3.765 1.255 api.py:101(post)
3 0.000 0.000 3.765 1.255 api.py:16(request)
3 0.000 0.000 3.762 1.254 sessions.py:445(request)
3 0.000 0.000 3.759 1.253 sessions.py:593(send)
3 0.000 0.000 3.757 1.252 adapters.py:393(send)
3 0.000 0.000 3.755 1.252 connectionpool.py:447(urlopen)
Upvotes: -1