Reputation: 485
I am working with a dataframe that looks something like this:
df = pd.DataFrame({'ID':['A','A','A','A','B','B','B','B'],'X':[1.2,2.1,3.8,4.5,5.8,6.2,7,8.2],'Y':[10,20,30,40,50,60,70,80],'IsTrue':[1,1,0,0,1,0,0,1],'IdxVar':[1,0,0,0,0,0,0,1]})
df["DistanceToIdx"] = np.sqrt((df.X - df.X[df.groupby('ID')['IdxVar'].transform('idxmax')].reset_index(drop=True))**2 \
+(df.Y - df.Y[df.groupby('ID')['IdxVar'].transform('idxmax')].reset_index(drop=True))**2)
I am trying to create a new df that has a single row per ID value, based on IdxVar
. Simple enough
newdf = df.loc[df.IdxVar==1,:]
I want my new columns to be some X0_1, X0_2, X1_1, X0_2
, where the Xi_j
can be seen as the X
values for i = IsTrue
(either 0 or 1) and the j
indicates the sorted index of DistanceToIdx
(X0_1
indicates the X
value in a given ID that has IsTrue = 0
and the lowest DistanceToIdx
).
I can do this through groupby()
:
groupdf = df.groupby('ID')
for name,group in groupdf:
for i in range(2):
newdf.loc[newdf.ID==name, 'X0_{}'.format(i+1)] = \
group.sort_values(by=['IsTrue','DistanceToIdx'],ascending=True)['X'].values[i]
newdf.loc[newdf.ID==name, 'X1_{}'.format(i+1)] = \
group.sort_values(by=['IsTrue','DistanceToIdx'],ascending=True)['X'].values[i+2]
This gives the desired output, but if I want to apply it to more variables then shown here and then loop through 100,000 groups, my loop is taking way too long.
I was wondering if there would be a way to speed this up with just the groupby function. My initial thought was just to figure out the pivot function, but since I want to order my new columns based on an existing row, I am not too confident based on the documentation that it would work.
Upvotes: 3
Views: 89
Reputation: 30930
I would use GroupBy.cumcount
to create the j
indexes
and be able to pivot the table (DataFrame.pivot_table
) differentiating in the 4 columns.
Then simply attach it to the frame where IdxVar==1
using DataFrame.join
new_df=df.copy()
#creating columns to pivot_table and set the name of the columns
new_df['id2']=df.groupby(['ID','IsTrue']).IsTrue.cumcount()+1
#Selecting IDxVar1 --->df1
df1=df[df.IdxVar.eq(1)]
#Using pivot_table
#new_df=new_df.sort_values(by=['IsTrue','DistanceToIdx'],ascending=True)
df2=new_df.pivot_table(index='ID',columns=['id2','IsTrue'],values='X')
#join both dataframes
new_df=df1.join(df2,on='ID')
#creating the names of columns
new_df.columns =df.columns.tolist() + [f'X{i}_{j}' for j,i in df2.columns]
print(new_df)
Output
ID X Y IsTrue IdxVar DistanceToIdx X0_1 X1_1 X0_2 X1_2
0 A 1.2 10 1 1 0.0 3.8 1.2 4.5 2.1
7 B 8.2 80 1 1 0.0 7.0 8.2 6.2 5.8
Upvotes: 0
Reputation: 25259
As you already created newdf
. I come up with solution using nsmallest
to get 2 smallest values of each group, unstack
and flatten multiindex columns. Finally, merge back to newdf
df1 = (df.set_index('X').groupby(['ID', 'IsTrue']).DistanceToIdx.nsmallest(2).
reset_index(level=-1).drop('DistanceToIdx', 1))
s = df1.groupby(level=[0,1]).cumcount().add(1)
df2 = df1.set_index(s, append=True).unstack([1,2]).sort_index(level=2, axis=1)
df2.columns = df2.columns.map('{0[0]}{0[1]}_{0[2]}'.format)
df_final = newdf.merge(df2.reset_index(), on='ID')
Out[239]:
ID X Y IsTrue IdxVar DistanceToIdx X0_1 X1_1 X0_2 X1_2
0 A 1.2 10 1 1 0.0 3.8 1.2 4.5 2.1
1 B 8.2 80 1 1 0.0 7.0 8.2 6.2 5.8
Upvotes: 1