Reputation: 299
I want to fill the NaN values on my dataframe on column c
with the mean for only rows who has as category B
, and ignore the others.
print (df)
Category b c
0 A 1 5.0
1 C 1 NaN
2 A 1 4.0
3 B 2 NaN
4 A 2 1.0
5 B 2 Nan
6 C 1 3.0
7 C 1 2.0
8 B 1 NaN
So what I'm doing for the moment is :
df.c = df.c.fillna(df.c.mean())
But it fill all the NaN values, while I want only to fill the 3rd, 5th and the 8th rows who had category value equal to B
.
Upvotes: 1
Views: 261
Reputation: 25269
Combine fillna
with slicing assignment
df.loc[df.Category.eq('B'), 'c'] = (df.loc[df.Category.eq('B'), 'c'].
fillna(df.c.mean()))
Out[736]:
Category b c
0 A 1 5.0
1 C 1 NaN
2 A 1 4.0
3 B 2 3.0
4 A 2 1.0
5 B 2 3.0
6 C 1 3.0
7 C 1 2.0
8 B 1 3.0
Or a direct assignment with 2 masks
pandas.DataFrame.eq
is the element wise equality operator.df.loc[df.Category.eq('B') & df.c.isna(), 'c'] = df.c.mean()
Out[745]:
Category b c
0 A 1 5.0
1 C 1 NaN
2 A 1 4.0
3 B 2 3.0
4 A 2 1.0
5 B 2 3.0
6 C 1 3.0
7 C 1 2.0
8 B 1 3.0
Upvotes: 3
Reputation: 124
This would be the answer for your question:
df.c = df.apply(
lambda row: row['c'].fillna(df.c.mean()) if row['Category']=='B' else row['c'] ,axis=1)
Upvotes: -1