Reputation: 604
I want to add the counts data of histogram to the plot in matplotlib. Here is my data;
import matplotlib.pyplot as plt
data = [['B', 1], ['C', 2], ['A', 3],['A', 4], ['B', 5], ['B', 6],['A', 7], ['B', 8], ['C', 9],['D',10]]
df = pd.DataFrame(data, columns = ['Name', 'Count'])
plt.hist(df['Name'])
plt.show()
The result is like this; result1
I tried to use plt.text
and value_counts()
but their sorting are different...
import matplotlib.pyplot as plt
data = [['B', 1], ['C', 2], ['A', 3],['A', 4], ['B', 5], ['B', 6],['A', 7], ['B', 8], ['C', 9],['D',10]]
df = pd.DataFrame(data, columns = ['Name', 'Count'])
xvals = np.arange(len(df['Name'].value_counts()))
yvals = list(df['Name'].value_counts())
for i in range(len(df['Name'].value_counts())):
plt.text(x=xvals[i], y=yvals[i],s=df['Name'].value_counts(sort=False)[i])
plt.hist(df['Name'])
plt.show()
So, I get a result like this; result2
I think it mustn't be so difficult but I can't find any solution.
Upvotes: 2
Views: 11781
Reputation: 908
pyplot.hist
returns the lengths and locations of the bins. You can make use of this by saving the returns from pyplot.hist
:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
data = [['B', 1], ['C', 2], ['A', 3],['A', 4], ['B', 5], ['B', 6],['A', 7], ['B', 8], ['C', 9],['D',10]]
df = pd.DataFrame(data, columns = ['Name', 'Count'])
xvals = np.arange(len(df['Name'].value_counts()))
yvals = list(df['Name'].value_counts())
counts, bins, _ = plt.hist(df['Name'])
for n, b in zip(counts, bins):
plt.gca().text(b + 0.1, n, str(n)) # +0.1 to center text
plt.show()
If you want to remove the 0.0s of the empty bars, change the for
loop to this:
for n, b in zip(counts, bins):
if n > 0:
plt.gca().text(b + 0.1, n, str(n)) # +0.1 to center text
Upvotes: 2
Reputation: 5757
You can try something like this:
hist
returns counts, bins and patches.
patches
is a list of rectangles. Then you can annotate the axis using the count and coordinates of the patch rectangles.
import numpy as np
import matplotlib.pyplot as plt
# generate some random data
x = np.random.randn(10000)
x = x * 100
x = x.astype(np.int)
# plot the histogram of the data
bins = np.arange(-300,300,20)
fig = plt.figure(figsize=(15,4))
ax = plt.gca()
counts, _, patches = ax.hist(x, bins=bins,edgecolor='r')
for count, patch in zip(counts,patches):
ax.annotate(str(int(count)), xy=(patch.get_x(), patch.get_height()))
plt.show()
Upvotes: 5