Reputation: 439
I used to rotate an object in multiple stages but cant figure out how to get the actual orientation (Eular angles) of object.
GL.Rotate(rotateCAx, new Vector3d(1, 0, 0));
GL.Rotate(rotateCAy, new Vector3d(0, 1, 0));
GL.Rotate(rotateCAz, new Vector3d(0, 0, 1));
GL.Rotate(xRot, new Vector3d(1, 0, 0));
GL.Rotate(yRot, new Vector3d(0, 1, 0));
GL.Rotate(zRot, new Vector3d(0, 0, 1));
What is the orientation of object now
Upvotes: 1
Views: 469
Reputation: 210998
I recommend to change the order of the angles, when you apply them tho the current matrix:
GL.Rotate(rotateCAz, new Vector3d(1, 0, 0));
GL.Rotate(rotateCAy, new Vector3d(0, 1, 0));
GL.Rotate(rotateCAx, new Vector3d(0, 0, 1));
GL.Rotate(zRot, new Vector3d(1, 0, 0));
GL.Rotate(yRot, new Vector3d(0, 1, 0));
GL.Rotate(xRot, new Vector3d(0, 0, 1));
Either read back the current matrix from the GPU:
Matrix4 currentModelView;
GL.GetFloat(GetPName.ModelviewMatrix, out currentModelView);
or calculate a transformation matrix with the same rotations:
Matrix4 currentModelView =
Matrix4.CreateRotationX(xRot * (float)Math.PI / 180.0f) *
Matrix4.CreateRotationY(yRot * (float)Math.PI / 180.0f) *
Matrix4.CreateRotationZ(zRot * (float)Math.PI / 180.0f) *
Matrix4.CreateRotationX(rotateCAx * (float)Math.PI / 180.0f) *
Matrix4.CreateRotationY(rotateCAy * (float)Math.PI / 180.0f) *
Matrix4.CreateRotationZ(rotateCAz * (float)Math.PI / 180.0f);
Convert the rotation component of the Matrix4
to a Quaternion
:
Quaternion q = currentModelView.ExtractRotation();
Compute the Pitch, yaw, and roll angles from the Quaternion
. An algorithm fro that can be found at Maths - Conversion Quaternion to Euler. I've used the OpenGL Mathematics implementation for glm::pitch
, glm::yaw
and glm::roll
:
const double epsi = 0.0001;
double y = 2.0 * (q.Y * q.Z + q.W * q.X);
double x = q.W * q.W - q.X * q.X - q.Y * q.Y + q.Z * q.Z;
double pitch = (Math.Abs(q.X) < epsi && Math.Abs(q.Y) < epsi) ? 2.0 * Math.Atan2(q.X, q.W) : Math.Atan2(y, x);
double yaw = Math.Asin(Math.Min(Math.Max(-2.0 * (q.X * q.Z - q.W * q.Y), -1.0), 1.0));
double roll = Math.Atan2(2.0 * (q.X * q.Y + q.W * q.Z), q.W * q.W + q.X * q.X - q.Y * q.Y - q.Z * q.Z);
The angles pitch
, yaw
and roll
correspond to the current rotations around the x, y and z axis (in view space).
float rot_x = pitch * 180.0f / (float)Math.PI;
float rot_y = yaw * 180.0f / (float)Math.PI;
float rot_z = roll * 180.0f / (float)Math.PI;
Upvotes: 1