Reputation: 45
My dataframe:
df = pd.DataFrame({'company': ['A', 'A', 'A', 'A', 'A','B','B','B','B','B'],
'offered': [1, 1, 0, 1, 1, 1, 0, 0, 1, 1],
'accepted': [0, 1, 0, 1, 1, 0, 0, 0, 1, 0]})
company offered accepted
0 A 1 0
1 A 1 1
2 A 0 0
3 A 1 1
4 A 1 1
5 B 1 0
6 B 0 0
7 B 0 0
8 B 1 1
9 B 1 0
I want my final result looks like this:
df2 = df.groupby('company')[['offered', 'accepted']].agg('sum')
df2['accept_rate'] = df2['accepted']/df2['offered']
df2
offered accepted accept_rate
company
A 4 3 0.750000
B 3 1 0.333333
However, I would like to do this in one shot (e.g., using lambda). Here's what I have tried
df['accept_rate'] = df['accepted'] / df['offered']
df.groupby('company')[['offered', 'accepted', 'accept_rate']].agg({'offered': 'sum',
'accepted': 'sum',
'accept_rate': lambda x: df['accepted'].sum()/df['offered'].sum()})
offered accepted accept_rate
company
A 4 3 0.571429
B 3 1 0.571429
As you can see the accept_rate = 0.571429 is for the total/combined companies.
How can I make the accept_rate to look like my desired final result?
Thanks in advance!
Upvotes: 0
Views: 46
Reputation: 14094
You want assign
df.groupby('company').agg({'offered': 'sum', 'accepted': 'sum'}).assign(accept_rate=lambda x: x['accepted']/x['offered'])
Upvotes: 3