Reputation: 423
I have a dataframe with user transactions:
date amount
2019-11-25 100
2019-11-25 40
2019-11-23 44
2019-10-30 1000
Date column has gaps. This makes time-serier plottng a bit weird. In order to fill the gaps I've created Series:
allthosedays = pd.DataFrame({
'date': pd.date_range(
start = pd.Timestamp(df.date.min()),
end = pd.Timestamp(df.date.max()),
freq = 'D'
)
})
And then I got stuck.
How can I merge my Dataframe and Series. And fill non-existing Amount values with zeros?
Or maybe I do everything wrong and problem solves without creating a Series?
Upvotes: 1
Views: 761
Reputation: 862441
This makes time-serier plottng a bit weird.
I think one reason is duplicated DatetimeIndex
value(s) 2019-11-25
, so it should be problem.
One possible solution is use sum
per datetimes for unique values with aggregation, e.g. sum
and then for add another values (if necessary) is possible use DataFrame.asfreq
:
df1 = df.set_index('date').sum(level=0).sort_index()
print (df1)
amount
date
2019-10-30 1000
2019-11-23 44
2019-11-25 140
df2 = df.set_index('date').sum(level=0).sort_index().asfreq('D', fill_value=0)
print (df2)
amount
date
2019-10-30 1000
2019-10-31 0
2019-11-01 0
2019-11-02 0
2019-11-03 0
2019-11-04 0
2019-11-05 0
2019-11-06 0
2019-11-07 0
2019-11-08 0
2019-11-09 0
2019-11-10 0
2019-11-11 0
2019-11-12 0
2019-11-13 0
2019-11-14 0
2019-11-15 0
2019-11-16 0
2019-11-17 0
2019-11-18 0
2019-11-19 0
2019-11-20 0
2019-11-21 0
2019-11-22 0
2019-11-23 44
2019-11-24 0
2019-11-25 140
Use DataFrame.merge
with left join, replace missing values and last convert to index:
df3 = allthosedays.merge(df, how='left').fillna({'amount':0}).astype({'amount':int})
print (df3)
date amount
0 2019-10-30 1000
1 2019-10-31 0
2 2019-11-01 0
3 2019-11-02 0
4 2019-11-03 0
5 2019-11-04 0
6 2019-11-05 0
7 2019-11-06 0
8 2019-11-07 0
9 2019-11-08 0
10 2019-11-09 0
11 2019-11-10 0
12 2019-11-11 0
13 2019-11-12 0
14 2019-11-13 0
15 2019-11-14 0
16 2019-11-15 0
17 2019-11-16 0
18 2019-11-17 0
19 2019-11-18 0
20 2019-11-19 0
21 2019-11-20 0
22 2019-11-21 0
23 2019-11-22 0
24 2019-11-23 44
25 2019-11-24 0
26 2019-11-25 100
27 2019-11-25 40
Upvotes: 1