Reputation: 23
I trying to do something with pandas.....
I finished separating outlier from my dataframe, but I don't know how to set my outliers age to median... Can I get some help?
Here's my code
users = pd.read_table('user.txt', sep='|', index_col='user_id')
print(users)
age gender occupation zip_code
user_id
1 24 M artist 85711
2 53 F artist 94043
3 23 M educator 32067
4 24 M artist 43537
5 33 F artist 15213
... ... ... ... ...
939 26 F student 33319
940 32 M engineer 02215
941 20 M student 97229
942 48 F educator 78209
943 22 M student 77841
[943 rows x 4 columns]
users_age = users.reset_index()[['occupation','age']]
users_age_grouped = users_age.groupby('occupation')
users_age['Lower'] = users_age_grouped['age'].transform(
lambda x: x.quantile(q=.25) - 1.5 * (x.quantile(q=.75) - x.quantile(q=.25)))
users_age['Median'] = users_age_grouped['age'].transform(lambda x: x.quantile(q=.5))
users_age['Upper'] = users_age_grouped['age'].transform(
lambda x: x.quantile(q=.75) + 1.5 * (x.quantile(q=.75) - x.quantile(q=.25)))
users_age['Outlier'] = (users_age['Lower'] > users_age['age']) |\
(users_age['Upper'] < users_age['age'])
users_age_outlier = users_age[users_age['Outlier']]
users_age_wo_outlier = users_age[users_age['Outlier'] == False]
print(users_age_outlier)
occupation age Lower Median Upper Outlier
29 student 7 8.5 22 36.5 True
38 student 41 8.5 22 36.5 True
187 student 42 8.5 22 36.5 True
210 artist 66 3.5 31 63.5 True
417 student 55 8.5 22 36.5 True
422 artist 64 3.5 31 63.5 True
558 engineer 69 6.5 36 66.5 True
564 student 40 8.5 22 36.5 True
766 engineer 70 6.5 36 66.5 True
802 engineer 70 6.5 36 66.5 True
838 student 38 8.5 22 36.5 True
860 student 38 8.5 22 36.5 True
914 student 50 8.5 22 36.5 True
925 student 49 8.5 22 36.5 True
What method I can use?
Upvotes: 2
Views: 1075
Reputation: 862691
I think you need Series.between
with numpy.where
:
mask = users_age['age'].between(users_age['Lower'], users_age['Upper'], inclusive=False)
users_age['age'] = np.where(mask, users_age['Median'], users_age['age'])
Upvotes: 1