Reputation: 69
I have a dataset of a about a million rows ordered by id, start (some ids have multiple starting points) and year, and would like to calculate 5-year averages (start-5 to start) of the two variables (var1 and var2) within each id.
For example, the 5-year averages in var1 would be 243.2=(47+99+1000+60+10)/5 and 46=(133+13+88-50)/4 (4-year average due to data range limitation) for id==1 and id==2, respectively. Is there a fast alternative to the code below?
Sample data:
id start year var1 var2
1 2005 2000 500 333
1 2005 2001 10 444
1 2005 2002 60 555
1 2005 2003 1000 99
1 2005 2004 99 15
1 2005 2005 47 0
1 2005 2006 180 NA
2 2003 2000 -50 NA
2 2003 2001 88 17
2 2003 2002 13 77
2 2003 2003 133 55
2 2003 2004 86 30
2 2003 2005 10 100
Code:
# Find startpoint per id
idx <- which(year==start)
# Compute
sapply(idx, function(x){
with( dat, c(id[x],
start[x],
mean( var1[id==id[x] & (year>=max(2000,year[x]-4) & year<=year[x])], na.rm=T ),
mean( var2[id==id[x] & (year>=max(2000,year[x]-4) & year<=year[x])], na.rm=T )) )
})
Tweaked version based on accepted solution below:
data <- setDT(data)[, .(var1_avg5 = mean(var1[year > start-5 & year <= start], na.rm = T),
var2_avg5 = mean(var2[year > start-5 & year <= start], na.rm = T),
start,
year),
by=id]
Upvotes: 1
Views: 119
Reputation: 532
Is this what you want?
library(data.table)
# data simulation
n = 7e6
data = data.table(
id = sample(seq(1,n / 7), n, replace = TRUE),
year = sample(seq(2000, 2010), n, replace = TRUE),
var1 = rnorm(n),
var2 = rexp(n)
)
data[, start := max(year) - sample(c(1,2), 1), id]
# calculation
t1 = Sys.time()
data = data[year > start - 5 & year <= start]
data[, .(var1 = mean(var1, na.rm = T),
var2 = mean(var2, na.rm = T)), id]
t2 = Sys.time()
print(t2 - t1)
Time difference of 0.511766 secs
Upvotes: 1
Reputation: 107687
Consider rollmean
in zoo
(well-known time series package) passed via tapply
:
library(zoo)
...
df$var1_five_yr_avg <- with(df, unlist(tapply(var1, id, function(x) rollmeanr(x, k=5, fill=NA))))
df$var2_five_yr_avg <- with(df, unlist(tapply(var2, id, function(x) rollmeanr(x, k=5, fill=NA))))
df
# id start year var1 var2 var1_five_yr_avg var2_five_yr_avg
# 1 1 2005 2000 500 333 NA NA
# 2 1 2005 2001 10 444 NA NA
# 3 1 2005 2002 60 555 NA NA
# 4 1 2005 2003 1000 99 NA NA
# 5 1 2005 2004 99 15 333.8 289.2
# 6 1 2005 2005 47 0 243.2 222.6
# 7 1 2005 2006 180 NA 277.2 NA
# 8 2 2003 2000 -50 NA NA NA
# 9 2 2003 2001 88 17 NA NA
# 10 2 2003 2002 13 77 NA NA
# 11 2 2003 2003 133 55 NA NA
# 12 2 2003 2004 86 30 54.0 NA
# 13 2 2003 2005 10 100 66.0 55.8
However, you indicate a more dynamic need to run multiple rolling means depending on data availability. Hence, consider running multiple rolling means with ifelse
logic.
proc_rollmeans <- function(x) {
five_yr <- rollmeanr(x, k=5, fill=NA)
four_yr <- rollmeanr(x, k=4, fill=NA)
three_yr <- rollmeanr(x, k=3, fill=NA)
two_yr <- rollmeanr(x, k=2, fill=NA)
one_yr <- x
ifelse(!is.na(five_yr), five_yr,
ifelse(!is.na(four_yr), four_yr,
ifelse(!is.na(three_yr), three_yr,
ifelse(!is.na(two_yr), two_yr, one_yr)
)
)
)
}
df$var1_five_yr_avg <- with(df, unlist(tapply(var1, id, proc_rollmeans)))
df$var2_five_yr_avg <- with(df, unlist(tapply(var2, id, proc_rollmeans)))
df
# id start year var1 var2 var1_five_yr_avg var2_five_yr_avg
# 1 1 2005 2000 500 333 500.0 333.00000
# 2 1 2005 2001 10 444 255.0 388.50000
# 3 1 2005 2002 60 555 190.0 444.00000
# 4 1 2005 2003 1000 99 392.5 357.75000
# 5 1 2005 2004 99 15 333.8 289.20000
# 6 1 2005 2005 47 0 243.2 222.60000
# 7 1 2005 2006 180 NA 277.2 NA
# 8 2 2003 2000 -50 NA -50.0 NA
# 9 2 2003 2001 88 17 19.0 17.00000
# 10 2 2003 2002 13 77 17.0 47.00000
# 11 2 2003 2003 133 55 46.0 49.66667
# 12 2 2003 2004 86 30 54.0 44.75000
# 13 2 2003 2005 10 100 66.0 55.80000
Upvotes: 0