Reputation: 349
In a paper I am reading now, it defines a new metric and authors claim some advantages over previous metrics. They verify their claim by some synthetic data, which looks like following
The implementation of their metric is pretty straightforward. However, I am not sure how they create this kind of synthetic data.
This looks like Gaussian where x
is only within certain intervals, I tried with following code but did not get anything similar to the plot presented in the paper.
import numpy as np
def generate_gaussian(size=1000, lb=-0.1, up=0.1):
data = np.random.randn(5000)
data = data[(data <= up) & (data >= lb)][:size]
return data
np.random.seed(1234)
base = generate_gaussian()
background_pos = base + 0.3
background_neg = base + 0.7
Now I am wondering if the authors create these data using some special distribution (other than Gaussian) I do not know?
Upvotes: 0
Views: 1722
Reputation: 713
You can use scipy.stats.norm
(info).
import libraries
>>> from scipy.stats import norm
>>> from matplotlib import pyplot
plot
>>> pyplot.hist(norm.rvs(loc=1, scale=0.5, size=10000), bins=30, alpha=0.5, label='norm_1')
>>> pyplot.hist(norm.rvs(loc=5, scale=0.5, size=10000), bins=30, alpha=0.5, label='norm_2')
>>> pyplot.legend()
>>> pyplot.show()
Clarification:
A normal distribution is defined by mean (loc
, distribution center) and standard distribution (scale
, measure of distribution dispersion or width). rvs
generates random samples of the desired normal distribution of size size
. For example next code generates 4 random elements of a normal distribution (mean = 1, SD = 1).
>>> norm.rvs(loc=1, scale=1, size=4)
array([ 0.52154255, 1.40873701, 1.55959291, -0.01730568])
Upvotes: 1
Reputation: 7065
Numpy has a numpy.random.normal
that draws random samples from a normal (Gaussian) distribution.
import numpy as np
import matplotlib.pyplot as plt
sigma = 0.05
s0 = np.random.normal(0.2, sigma, 5000)
s1 = np.random.normal(0.6, sigma, 5000)
plt.hist(s0, 300, density=True, color="b")
plt.hist(s1, 300, density=True, color="r")
plt.xlim(0, 1)
plt.show()
You can change the values of the mu
(mean) and sigma
to alter the distributions
mu = 0.55
sigma = 0.1
dist = np.random.normal(mu, sigma, 5000)
Upvotes: 2
Reputation: 2136
You have cut off the data at +/- 0.1. A normalised Gausian distribution only 'looks Gaussian' if you look over the range approximately +/- 3. Try this:
import numpy as np
def generate_gaussian(size=1000, lb=-3, up=3):
data = np.random.randn(5000)
data = data[(data <= up) & (data >= lb)][:size]
return data
np.random.seed(1234)
base = generate_gaussian()
background_pos = base + 5
background_neg = base + 15
Upvotes: 1