Shailendra Kaushik
Shailendra Kaushik

Reputation: 31

How to build process simulator in gekko knowing time constant and steady-state values

I have a very complicated non-linear dynamical system for which I know time constant and steady-state responses at each time instance from CFD (Computational Fluid Dynamics). How do I (1) build a process simulator using this information? and (2) how do I tune time-constant values if I know measured inputs and outputs and steady-state values?

Upvotes: 3

Views: 293

Answers (1)

John Hedengren
John Hedengren

Reputation: 14346

Question 1: Build a Process Simulator

You may want to first try a linear time-series model and then go to nonlinear if this doesn't work. Below is a sample script to identify a linear time-series model.

Linear identification

from gekko import GEKKO
import pandas as pd
import matplotlib.pyplot as plt

# load data and parse into columns
url = 'http://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
data = pd.read_csv(url)
t = data['Time']
u = data[['H1','H2']]
y = data[['T1','T2']]

# generate time-series model
m = GEKKO(remote=False) # remote=True for MacOS

# system identification
na = 2 # output coefficients
nb = 2 # input coefficients
yp,p,K = m.sysid(t,u,y,na,nb,diaglevel=1)

plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$u_0$',r'$u_1$'])
plt.ylabel('MVs')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$y_0$',r'$y_1$',r'$z_0$',r'$z_1$'])
plt.ylabel('CVs')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()

Note that the data can be dynamic data, not necessarily separated into steady-state and dynamic parts. You need to call m.sysid with the correct inputs as detailed in the documentation. Once you have a good model, you can transform it into a simulator with m.arx(p) where p is the parameter output from the m.sysid function.

If linear identification doesn't work then you can try a nonlinear approach such as shown in TCLab B Exercise (See Python Gekko Neural Network). You can use Gekko's Deep Learning capabilities to simplify the coding. Once you have a steady-state relationship, add dynamics with a first-order or second-order relationship with a differential equation that relates the steady-state output to the dynamic output such as m.Equation(tau * x.dt() + x = x_ss) where tau is the time constant, x.dt() is the time derivative, x is the dynamic output, and x_ss is the steady state output. This is called a Hammerstein model because the steady state precedes the dynamic calculations. You can also put the dynamics on the inputs as a Wiener model. You'll be able to find more information on-line about Hammerstein-Wiener Models.

Question 2: Tuning the time constants

If you already have a steady-state relationship and you want to tune the time constants then regression is a powerful method because it can try many different combinations of your time constant to minimize the difference between model and measurements. There are a few examples of doing this with scipy.optimize.minimize and gekko.

Estimate Parameters with Python Gekko

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from gekko import GEKKO

# Import or generate data
filename = 'tclab_dyn_data2.csv'
try:
    data = pd.read_csv(filename)
except:
    url = 'http://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
    data = pd.read_csv(url)

# Create GEKKO Model
m = GEKKO()
m.time = data['Time'].values

# Parameters to Estimate
U = m.FV(value=10,lb=1,ub=20)
alpha1 = m.FV(value=0.01,lb=0.003,ub=0.03)  # W / % heater
alpha2 = m.FV(value=0.005,lb=0.002,ub=0.02) # W / % heater

# STATUS=1 allows solver to adjust parameter
U.STATUS = 1  
alpha1.STATUS = 1 
alpha2.STATUS = 1 

# Measured inputs
Q1 = m.MV(value=data['H1'].values)
Q2 = m.MV(value=data['H2'].values)

# State variables
TC1 = m.CV(value=data['T1'].values)
TC1.FSTATUS = 1    # minimize fstatus * (meas-pred)^2
TC2 = m.CV(value=data['T2'].values)
TC2.FSTATUS = 1    # minimize fstatus * (meas-pred)^2

Ta = m.Param(value=19.0+273.15)     # K
mass = m.Param(value=4.0/1000.0)    # kg
Cp = m.Param(value=0.5*1000.0)      # J/kg-K    
A = m.Param(value=10.0/100.0**2)    # Area not between heaters in m^2
As = m.Param(value=2.0/100.0**2)    # Area between heaters in m^2
eps = m.Param(value=0.9)            # Emissivity
sigma = m.Const(5.67e-8)            # Stefan-Boltzmann

# Heater temperatures in Kelvin
T1 = m.Intermediate(TC1+273.15)
T2 = m.Intermediate(TC2+273.15)

# Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective
Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative

# Semi-fundamental correlations (energy balances)
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
                    + eps * sigma * A * (Ta**4 - T1**4) \
                    + Q_C12 + Q_R12 \
                    + alpha1*Q1))

m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
                    + eps * sigma * A * (Ta**4 - T2**4) \
                    - Q_C12 - Q_R12 \
                    + alpha2*Q2))

# Options
m.options.IMODE   = 5 # MHE
m.options.EV_TYPE = 2 # Objective type
m.options.NODES   = 2 # Collocation nodes
m.options.SOLVER  = 3 # IPOPT

# Solve
m.solve(disp=True)

# Parameter values
print('U     : ' + str(U.value[0]))
print('alpha1: ' + str(alpha1.value[0]))
print('alpha2: ' + str(alpha2.value[0]))

# Create plot
plt.figure()
ax=plt.subplot(2,1,1)
ax.grid()
plt.plot(data['Time'],data['T1'],'ro',label=r'$T_1$ measured')
plt.plot(m.time,TC1.value,color='purple',linestyle='--',\
         linewidth=3,label=r'$T_1$ predicted')
plt.plot(data['Time'],data['T2'],'bx',label=r'$T_2$ measured')
plt.plot(m.time,TC2.value,color='orange',linestyle='--',\
         linewidth=3,label=r'$T_2$ predicted')
plt.ylabel('Temperature (degC)')
plt.legend(loc=2)
ax=plt.subplot(2,1,2)
ax.grid()
plt.plot(data['Time'],data['H1'],'r-',\
         linewidth=3,label=r'$Q_1$')
plt.plot(data['Time'],data['H2'],'b:',\
         linewidth=3,label=r'$Q_2$')
plt.ylabel('Heaters')
plt.xlabel('Time (sec)')
plt.legend(loc='best')
plt.show()

Upvotes: 1

Related Questions