Reputation: 25
I have a sequence of ones and zeros and I would like to count how often islands of consecutive ones appear.
Given:
S = [1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1]
By counting the islands of consecutive ones I mean this:
R = [4 3 1]
…because there are four single ones, three double ones and a single triplet of ones.
So that when multiplied by the length of the islands [1 2 3].
[4 3 1] * [1 2 3]’ = 13
Which corresponds to sum(S)
, because there are thirteen ones.
I hope to vectorize the solution rather than loop something.
I came up with something like:
R = histcounts(diff( [0 (find( ~ (S > 0) ) ) numel(S)+1] ))
But the result does not make much sense. It counts too many triplets.
All pieces of code I find on the internet revolve around diff([0 something numel(S)])
but the questions are always slightly different and don’t really help me
Thankful for any advice!
Upvotes: 0
Views: 77
Reputation: 10792
You could also obtain the same result with:
x = find(S==1)-(1:sum(S)) %give a specific value to each group of 1
h = histc(x,x) %compute the length of each group, you can also use histc(x,unique(x))
r = histc(h,1:max(h)) %count the occurence of each length
Result:
r =
4,3,1
Upvotes: 1
Reputation: 2192
The following should do it. Hopefully the comments are clear.
S = [1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1];
% use diff to find the rising and falling edges, padding the start and end with 0
edges = diff([0,S,0]);
% get a list of the rising edges
rising = find(edges==1);
% and falling edges
falling = find(edges==-1);
% and thereby get the lengths of all the runs
SRuns = falling - rising;
% The longest run
maxRun = max(SRuns);
% Finally make a histogram, putting the bin centres
R = hist(SRuns,1:maxRun);
Upvotes: 2