Reputation: 8033
pd.MultiIndex.from_product
but I am not able to figure it out.You can ignore the values in have in the picture. It can be random values, not a problem. I will manage to figure out entering the values i want later.
Upvotes: 1
Views: 946
Reputation: 18647
Here's how you could create a MultiIndex.from_product
. For plotting you'll need to restructure the data slightly - I'm using stack
and reset_index
here. I'd recommend seaborn.Facetgrid
for easy to configure scatter subplots.
import matplotlib.pyplot as plt
import seaborn as sns
# Create MultiIndex from_product
columns = pd.MultiIndex.from_product([['A', 'B', 'C'], ['x', 'y']])
np.random.seed(0)
df = pd.DataFrame(np.random.randn(10, 6), columns=columns)
print(df)
A B C
x y x y x y
0 1.764052 0.400157 0.978738 2.240893 1.867558 -0.977278
1 0.950088 -0.151357 -0.103219 0.410599 0.144044 1.454274
2 0.761038 0.121675 0.443863 0.333674 1.494079 -0.205158
3 0.313068 -0.854096 -2.552990 0.653619 0.864436 -0.742165
4 2.269755 -1.454366 0.045759 -0.187184 1.532779 1.469359
5 0.154947 0.378163 -0.887786 -1.980796 -0.347912 0.156349
6 1.230291 1.202380 -0.387327 -0.302303 -1.048553 -1.420018
7 -1.706270 1.950775 -0.509652 -0.438074 -1.252795 0.777490
8 -1.613898 -0.212740 -0.895467 0.386902 -0.510805 -1.180632
9 -0.028182 0.428332 0.066517 0.302472 -0.634322 -0.362741
# Scatter subplots
g = sns.FacetGrid(df.stack(level=0).reset_index(), row='level_1')
g.map(plt.scatter, 'x', 'y')
Alternatively, if you require one plot with distinction between 'A', 'B' & 'C' you could try:
sns.scatterplot(data=df.stack(level=0).reset_index(), x='x', y='y', hue='level_1')
Upvotes: 3
Reputation: 15384
You may want to create a dataframe with three columns: x, y and t (either "A", "B" or "C"):
import pandas as pd
df = pd.DataFrame({"x": [ 1, 1, 1, 2, 2, 2, 3, 3, 3 ],
"y": [ 1, 2, 3, 2, 4, 6, 3, 6, 9 ],
"t": ["A", "B", "C", "A", "B", "C", "A", "B", "C"]})
Plotting three different lines is also very easy:
import matplotlib.pyplot as plt
for index, group in df.groupby("t"):
plt.plot(group["x"], group["y"])
plt.show()
Upvotes: 1