Reputation: 1522
I use following fit to smooth the data:
lo<- loess(df_raw$`101` ~ df_raw$Scan)
Now, why do following two commands provide completely different fit results?
plot(df_raw$Scan, df_raw$`101`)
lines(lo,col='red')
plot(df_raw$Scan, df_raw$`101`)
lines(predict(lo), col='red', lwd=2)
Upvotes: 0
Views: 59
Reputation: 6954
Check the non existent differences in the following `lines()
library(ggplot2)
library(tidyverse)
iris <- iris %>% arrange(Sepal.Width)
lo <- loess(iris$Sepal.Length ~ iris$Sepal.Width)
plot(iris$Sepal.Width, iris$Sepal.Length)
lines(lo, col = "blue")
lines(lo$x, lo$y, col='red')
lines(iris$Sepal.Width, iris$Sepal.Length, col = "orange")
plot(iris$Sepal.Width, iris$Sepal.Length)
lines(predict(lo), col='blue', lwd=2)
lines(lo$fitted, col='red', lwd=2)
Upvotes: 1