Reputation: 140
I need your help in creating a normal or better truncated laplace distribution which linearly depends on another laplace distributed variable.
This is what I achieved so far unfortunately with NaNs in the derived y-distribution:
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde, truncnorm
slope = 0.2237
intercept = 1.066
spread = 4.8719
def dependency(x):
y_lin = slope * x + intercept
lower = slope / spread * 3 * x
upper = slope * spread / 3 * x + 2 * intercept
y_lin_noise = np.random.laplace(loc=0, scale=spread, size=len(y_lin)) + y_lin
y_lin_noise[y_lin_noise < lower] = np.nan # This is the desperate solution where
y_lin_noise[y_lin_noise > upper] = np.nan # NaNs are introduced
return y_lin_noise
max = 100
min = 1
mean = 40
sigma = 25
x = truncnorm((min-mean)/sigma, (max-mean)/sigma, loc=mean, scale=sigma).rvs(5000)
y = dependency(x)
# Plotting
xx = np.linspace(np.nanmin(x), np.nanmax(x), 100)
yy = slope * xx + intercept
lower = slope/spread*3*xx
upper = slope*spread/3*xx + 2*intercept
mask = ~np.isnan(y) & ~np.isnan(x)
x = x[mask]
y = y[mask]
xy = np.vstack([x, y])
z = gaussian_kde(xy)(xy)
idz = z.argsort()
x, y, z = x[idz], y[idz], z[idz]
fig, ax = plt.subplots(figsize=(5, 5))
plt.plot(xx, upper, 'r-.', label='upper constraint')
plt.plot(xx, lower, 'r--', label='lower constraint')
ax.scatter(x, y, c=z, s=3)
plt.xlabel(r'$\bf X_{laplace}$')
plt.ylabel(r'$\bf Y_{{derived}}$')
plt.plot(xx, yy, 'r', label='regression model')
plt.legend()
plt.tight_layout()
plt.show()
What I want to get in the end is a y-distribution without NaNs, so that for every x there is a corresponding y within in the range of the upper/lower thresholds. So to say, a lower/upper-truncated distribution around the regression line.
I am looking forward to ideas!
Thank you and best regards.
Upvotes: 0
Views: 172
Reputation: 1629
What you want to do is basically retry for values that are outside your bounds. You could define a function that does this for every value or you could define the initial one and loop through the answer to "correct" the values that are out of bounds like this:
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde, truncnorm
slope = 0.2237
intercept = 1.066
spread = 4.8719
#slow but effective
def truncated_noise(y, lower, upper):
while True:
y_noise = np.random.laplace(loc=0, scale=spread, size=1) + y
if upper > y_noise > lower:
return y_noise
def refine_noise(y, y_lin_noise, lower, upper):
for i in range(len(y_lin_noise)):
if upper[i] < y_lin_noise[i] or lower[i] > y_lin_noise[i]:
y_lin_noise[i] = truncated_noise(y[i], lower[i], upper[i])
return y_lin_noise
def dependency(x):
y_lin = slope * x + intercept
lower = slope / spread * 3 * x
upper = slope * spread / 3 * x + 2 * intercept
y_lin_noise = np.random.laplace(loc=0, scale=spread, size=len(y_lin)) + y_lin
y_lin_noise = refine_noise(y_lin, y_lin_noise, lower, upper)
return y_lin_noise
max = 100
min = 1
mean = 40
sigma = 25
x = truncnorm((min-mean)/sigma, (max-mean)/sigma, loc=mean, scale=sigma).rvs(5000)
y = dependency(x)
# Plotting
xx = np.linspace(np.nanmin(x), np.nanmax(x), 100)
yy = slope * xx + intercept
lower = slope/spread*3*xx
upper = slope*spread/3*xx + 2*intercept
xy = np.vstack([x, y])
z = gaussian_kde(xy)(xy)
idz = z.argsort()
x, y, z = x[idz], y[idz], z[idz]
fig, ax = plt.subplots(figsize=(5, 5))
plt.plot(xx, upper, 'r-.', label='upper constraint')
plt.plot(xx, lower, 'r--', label='lower constraint')
ax.scatter(x, y, c=z, s=3)
plt.xlabel(r'$\bf X_{laplace}$')
plt.ylabel(r'$\bf Y_{{derived}}$')
plt.plot(xx, yy, 'r', label='regression model')
plt.legend()
plt.tight_layout()
plt.show()
I don't know what you want to use this for but know that this is no longer a random laplace distribution so never do this if you need that for your function.
Upvotes: 2