Reputation: 25
How to find the correlation-peak values and coordinates of a set of 2D cross-correlation functions?
Given an 3D ndarray that contains a set of 2D cross-correlation functions. What is the efficient way to find the maximum(peak) values and their coordinates(x and y indices)?
The code below do the work but I think it is inefficient.
import numpy as np
import numpy.matlib
ccorr = np.random.rand(7,5,5)
xind = ccorr.argmax(axis=-1)
mccorr = ccorr[np.matlib.repmat(np.arange(0,7)[:,np.newaxis],1,5),np.matlib.repmat(np.arange(0,5)[np.newaxis,:],7,1), xind]
yind = mccorr.argmax(axis=-1)
xind = xind[np.arange(0,7),yind]
values = mccorr[np.arange(0,7),yind]
print("cross-correlation functions (z,y,x)")
print(ccorr)
print("x and y indices of the maximum values")
print(xind,yind)
print("Maximum values")
print(values)
Upvotes: 2
Views: 87
Reputation: 14399
You'll want to flatten the dimensions you're searching over and then use unravel_index
and take_along_axis
to get the coordinates and values, respectively.
ccorr = np.random.rand(7,5,5)
cc_rav = ccorr.reshape(ccorr.shape[0], -1)
idx = np.argmax(cc_rav, axis = -1)
indices_2d = np.unravel_index(idx, ccorr.shape[1:])
vals = np.take_along_axis(ccorr, indices = indices_2d, axis = 0)
if you're using numpy
version <1.15:
vals = cc_rav[np.arange(ccorr.shape[0]), idx]
or:
vals = ccorr[np.arange(ccorr.shape[0]),
indices_2d[0], indices_2d[1]]
Upvotes: 1